

SureThing: device location certification for the loT

Miguel.Pardal@tecnico.ulisboa.pt

INESC TEC, December 3rd, 2018

Outline

- Short career summary
- Research context
- SureThing project
 - for Mobile devices
 - Ongoing work

Career steps

LEIC 2000

 Personal Information Server (feeds) 3

MEIC 2006

 Web Services Security (digital notary)

DEIC 2014

 Scalable & Secure RFID Discovery (supply chain traceability, **IoT**)

Post-doc/sabbatical 2017

 Private communication middleware (multi-cipher, multi-path communication)

Technische Universität München

Distributed Systems Group

Security & Privacy

 in the new *frontiers* of
 Information Technologies
 and Computer Science:
 Internet of Things & Cloud

Security & Privacy

Digital Citizenship

CIA properties:

- Confidentiality
- Integrity
- Availability
- TIU properties:
 - Transparency
 - Intervenability
 - Unlinkability

Security & Privacy on IoT and Cloud

Research context

From *distributed* to *ubiquitous* computing

From *distributed* to *ubiquitous* computing

10

From *distributed* to *ubiquitous* computing

Miguel L. Pardal

Figure credits: Marc-Oliver Pahl

Figure credits: Marc-Oliver Pahl

The Internet of Things

The interface between the *physical* and *digital* world that allows one to gather data from everyday objects and also *control* them.

Device growth

Figure: IBM

Electronic business

Augmented reality

Hyper-reality

Concept video by Keiichi Matsuda: https://vimeo.com/166807261

Hyper-reality (turned off)

Hyper-reality gone wrong

The Internet of ransoms

Image credits: Joy of Tech

IoT: from *edge* to *cloud*

Embedded Systems and The Internet of Things – What's Under the Hood? | RTC Magazine http://rtcmagazine.com/articles/view/103677

DEVICE PHYSICAL ECOSYSTEM **DEVICE MEMORY** ACCESS CONTROL INTERFACES DEVICE WEB **DEVICE NETWORK DEVICE FIRMWARE** INTERFACE SERVICES IoT ADMINISTRATIVE LOCAL DATA CLOUD WEB STORAGE INTERFACE INTERFACE attack surfaces VENDOR BACKEND THIRD-PARTY ECOSYSTEM BACKEND APIS APIs COMMUNICATION VENDOR BACKEND UPDATE MOBILE APIs MECHANISM APPLICATION NETWORK TRAFFIC **Credits:** Daniel Miessler

Why new research is necessary

Bruce Schneier, The Internet of Things Will Turn Large-Scale Hacks into Real World Disasters | Motherboard Magazine http://motherboard:vice.com/en_uk/read/theinternet-of-things-will-cause-the-first-ever-largescale-internet-disaster

- Internet threats so far have been most about *confidentiality*
 - Bad things happen to our data
 - Most problems today are not solved, only mitigated
- On the Internet of Things, attackers now have "hands and feet"
 - The ability to directly affect the physical world
 - Attacks against flesh, steel, and concrete

Security & Privacy on IoT and Cloud

IoT security challenges

Secure Device

- How to make sure device code is correct and up-to-date?
- How to trust data from device?
- Secure Communication
 - How to protect confidentiality and integrity when infra-structure has more constraints?
- Secure Communities
 - How can people participate and take benefits?
 - How can people trust the system?

Security & Privacy on IoT and Cloud

Project goal

Create and validate

 location certificates
 Devices can make proof of
 their location or ask proofs

 For Internet of Things

 applications
 Smart Spaces

SureThing framework

- Open to diverse technologies
- Proof data format
 - Transport
 - Composition
 - Signature
- Proof assessment
 - Weight, rank, compare strength of proofs

Use case: smart tourism

- App for tourists
 - Improve experience
- Reward visit to locations
- Challenges:
 - Open environment
 - Reuse infrastructure

Use case: smart taxes

- Track movements of goods
 - Mitigate fake shipments
- Combine location proofs with digital notaries:
 - Time-stamping
 - Long-term archival
 - Tamper-resistance
- Extend existing infrastructure with dedicated devices

Proximity

Is the device *really* there?

Idea

Let us use the *diversity* and *scale* of IoT for cyber-defense

Inspiration: PUFs Physically Uncloanable Functions

Security & Privacy on IoT and Cloud

Location sources

- Raw location
 - No assurance, can be forged
- Location metadata
 - Time, date, identifiers
- "Unique" measurements
 - Locality-sensitive network measurements
 - Ambience sensing
 - Environment and social context
 - Witnesses

Threats

- Location spoofing
- How to be sure that the device is present?
 - Combine location sources for more trusted location claim
 - Witness-based location proofs

SureThing for mobile devices

SureThing for mobile devices

- Issue location proofs for smartphones
- Witness-based approach
- Different location estimation techniques

Location Proof Techniques

 Based on the used location estimation technique

GPS

Bluetooth

39

Witness Models

- Two main models:
 - **Master** *trusted* witness
 - **Mobile** *circumstantial* and

partially trusted witness

Location Proof in JSON format

```
"witnessLocation":
```

```
"latitude": 38.0123489,
```

```
"longitude": -9.9876541,
```

42

},

}

"nonce": 1234,

"signature": H9xalhDAsHaS..."

Communication Protocol

Implementation

- Android mobile application for both
 Prover and Witness
 - Java programming language
- Verifier and Certification Authority
 - RESTful web services
 - JSON messages

45

Evaluation

- How accurate are the location estimation techniques?
- How long does it take to issue a location proof?

• Building with five different areas

• Shopping center

Evaluation

Setup

• Testing Geo and Wi-Fi techniques precision

Comparison of location estimates using GPS and Wi-Fi

Bluetooth location estimates

	Correct Claims	Wrong Claims
Sushi Beacon	85%	15%
Vegan Beacon	72%	28%
Pizza Beacon	81%	19%

Location estimation time

Total proof time

51

Collusion avoidance mechanisms

- Provers can be colluding with false witnesses
- Verifier has to use mechanisms to avoid successful collusions

• Prover has to gather proofs from multiple

 Proofs given by repeated witnesses become less valuable

Collusion avoidance simulation

Netlogo simulation

- Simulated shopping center
- 250 users that behave as *Provers* and *Witnesses*

55

Collusion avoidance simulation

Accepted Denied

Summary

Witness model	Trusted by the Verifier?	Bottleneck Potential?	Needs Collusion Avoidance?	Best scenarios
Master	Yes	High	No	Low attendance
Mobile	No	Low	Yes	High attendance

Conclusion

- Users must provide location proofs to access valuable services
- SureThing for mobile devices is a flexible solution
 - Different location estimation techniques
 - Different witness models
- Implementation of a prototype including all the entities

Future/ongoing work

Started in October 2018

Neighborhood watch

- Smart Spaces locality
 - Neighborhood
- Keep track of limited devices
 - How they behave
- Detect presence of other devices (intrusions)
 - Detect changes in communication

Use case: Smart Tourism

- App for tourists
 - Rewards for visit to locations
 - Fast proofs
- Challenges

Gabriel Maia

- Open environment
- Reuse infrastructure

Use case: smart taxes

- App to track shipments
 - Mitigate fake goods shipments
- Combine location proofs with digital notaries
 - Time-stamping
 - Tamper-resistance
 - Long-term archival
- May add dedicated infrastructure

Henrique Santos

Privacypreserving location proofs

 Location data can easily be personal data

- User privacy needs to be protected
- Address TUI properties
 - Transparent, Unlink, Intervene

SureThing: Device location certification for IoT

Thank you!

http://surething-project.eu

miguel.pardal@tecnico.ulisboa.pt

SureThing publications

- Diogo Calado, Miguel L. Pardal. Tamper-proof incentive scheme for mobile crowdsensing systems. IEEE International Symposium on Network Computing and Applications (NCA), 2018.
- João Ferreira, Miguel L. Pardal. Witness-based location proofs for mobile devices (short). IEEE International Symposium on Network Computing and Applications (NCA), 2018.

Security & Privacy on IoT and Cloud

This4That -Incentives for data capture and data sharing

- Reward participants that share data
 - E.g. SureThing witness
- Build a distributed, tamper-proof incentive ledger

Security & Privacy on IoT and Cloud

This4That architecture

