6thSense

Context-aware Sensor-Based Attack Detector for Smart Devices

Usenix Security Symposium 2017

Amit Kumar Sikder, Hidayet Aksu, and A. Selcuk Uluagac.

GSD Meeting 30-11-2018 - Rui Claro

Outline

- Introduction
- Technical Approach
- Performance Overview
- Conclusions and Future Work
- Discussion

Introduction

Background

- Smartphones
- Wearables
- Smart Homes
- Smart Cities

New Sensor-based Threats

- Eavesdropping
- Keystroke Inference
- Location Inference
- Triggering Malware

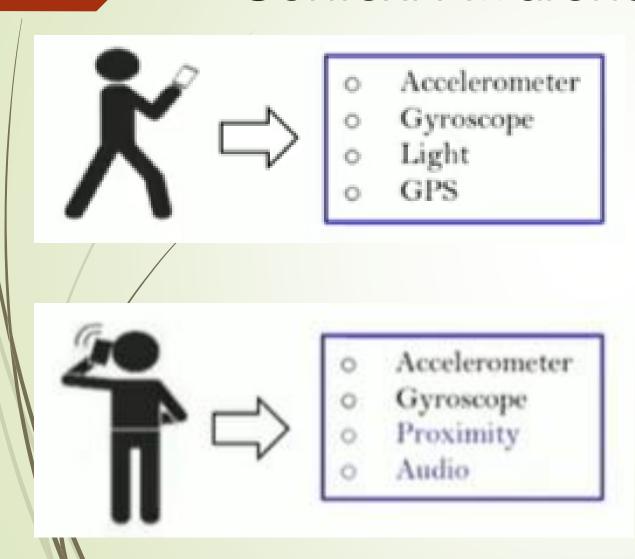
Motivation

- Users are not knowledgeable about the threats
- Users are unaware of the consequences
- Rapid growth of threats in recent years
- Failure of existing sensor management systems

Contributions

- Sensor-based Attack Detector
 - 6thSense
- Real-life user data
 - From 50 Users
- High detection rate
 - Small system overhead

Technical Approach

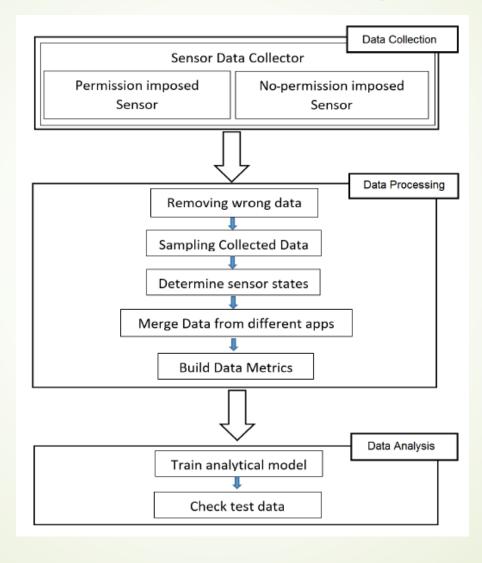

Existing Sensor Management Systems

- Similar sensor management frameworks for existing operating systems (e.g., Android, iOS).
- Permission-based access only.
 - Only selected sensors are covered.
- No permission for accessing other sensors
 - E.g., accelerometer, light sensor, etc.
- No user control over sensor after granting permission.
- No subsequent knowledge for users about information accessed via sensors.

Threat Model

- Stealing Information via Sensor
 - Exploiting sensors to capture information on a device and reveal them to an attacker.
- Triggering Malware via Sensor
 - Malicious app installed in the device triggered by a message via sensors.
- Information Leakage via Sensor
 - Information saved or recorded in the device transferred via sensor.

Context Awareness



Sensor Co-dependence

- For each user task/activity, a specific set of sensors remains active.
- Sensors are considered as co-dependent entities for each task/activity.
- By observing which sensors are active for a task/activity, it is possible to differentiate between benign activities and malicious activities.

6thSense: Framework Overview

6thSense: Detection Techniques

- Markov Chain
- Naïve Bayes
- Other Machine Learning Techniques
 - Logistic Function, J48, etc.

Performance Evaluation

Performance Evaluation

- Data collected from 50 different users.
- Nine tasks/activities selected.

Task Category	Task Name
Generic Activities	 Sleeping Driving as driver Driving as passenger
User-related Activities	 Walking with phone in hand Walking with phone in pocket/bag Playing games Browsing Making phone calls Making video calls

- 75% of data used for training, 25% of data used for test.
- Performance Metrics:
 - Recall Rate, ROC, PRC, Accuracy, F-Score, etc.

Markov Chain Based Detection Results

	Threshold (Number of consecutive malicious states)	Recall rate	False negative rate	Precision rate (specificity)	False positive rate	Accuracy	F-score
•	0	0.62	0.38	1	0	0.6833	0.7654
	1	0.86	0.14	1	0	0.8833	0.9247
	2	0.96	0.04	1	0	0.9667	0.9796
	3	0.98	0.02	1	0	0.9833	0.9899
	5	1	0	0.9	0.1	0.9833	0.9474
	6	1	0	0.8	0.2	0.9667	0.8889
	8	1	0	0.6	0.4	0.9333	0.75
	10	1	0	0.5	0.5	0.9167	0.6667
	12	1	0	0.5	0.5	0.9167	0.6667
	15	1	0	0.3	0.7	0.8833	0.4615

Naïve Bayes Model Results

Threshold Probability	Recall rate	False negative rate	Precision rate (specificity)	False positive rate	Accuracy	F-score
55%	1	0	0.6	0.4	0.9333	0.75
57%	1	0	0.7	0.3	0.95	0.8235
60%	1	0	0.7	0.3	0.95	0.8235
62%	1	0	0.7	0.3	0.95	0.8235
65%	0.94	0.06	0.7	0.3	0.9	0.8024
67%	0.88	0.12	0.7	0.3	0.85	0.7797
70%	0.7	0.3	0.8	0.2	0.7167	0.7467
72%	0.7	0.3	0.9	0.1	0.7333	0.7875
75%	0.66	0.34	0.9	0.1	0.7	0.7616
80%	0.66	0.34	0.9	0.1	0.7	0.7615

Detection with other Machine Learning approaches

	Algorithms	Recall rate	False negative rate	Precision rate	False positive rate	Accuracy	F-score
/_	PART	0.9998	0.0002	0.6528	0.3472	0.99	0.7899
	Logistic Function	0.9997	0.0003	0.2778	0.7222	0.998	0.4348
	J48	0.9998	0.0002	0.6528	0.3472	0.99	0.7899
	LMT	0.9998	0.0002	0.9306	0.0694	0.9997	0.964
/	Hoeffding Tree	1	0	0.0556	0.9444	0.9978	0.1053
_ 1	Multilayer Perceptron	0.9998	0.0002	0.6944	0.3056	0.9991	0.8196

Performance Overhead

Parameters	Time	No-permission imposed sensors	Permission imposed sensors	
CPU Usage	N/A	3.90%	0.3%	
RAM Usage	N/A	23 MB	14 MB	
	For 1 min	6.5 MB	1 KB	
Disc Usage	For 5 min	9 MB	2 KB	
	For 10	12 MB	3 KB	
	min			
Power - Consumption -	1 min	13.5 mW	3.12 mW	
	5 min	96.67 mW	27.4 mW	
	10 min	133.33 mW	45 mW	
Power	1 min	2.68 mW	0.23 mW	
Consumption	5 min	23.4 mW	9.63 mW	
(without datafile)	(without datafile) 10 min		17 mW	

Conclusions and Future Work

Contributions

- Novel context-aware sensor-based attack detector.
- Machine Learning techniques used to develop the framework.
- Evaluation based on data collected from real users.
- High detection rate with minimum system overhead.

Future Work

Implement the framework for small handheld devices such as fitness bands.

Discussion

- Prototype of 6thSense developed only for Samsung Galaxy s5 Duo.
 - Sensors have different specification for different devices
 - Reimplementation needed for other devices
- Machine Learning training is done offline.
 - Training could be outsourced to the cloud
 - Privacy concerns in transferring sensor data
- Collection of data done in a compromised device.
 - Tainted data for training

6thSense and my thesis

- Broad thesis topic:
 - Privacy and Security in the Internet of Things
- Currently working on my TI (Tópicos de Investigação) course:
 - Intrusion Detection Systems, Machine Learning
- Future Work of 6thSense is a possible path
 - Expand to a distributed cloud based solution
 - Using privacy-preserving techniques