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Abstract—Millions of tourists each year use smartphone ap-
plications to discover points of interest. Despite relying heavily
on location sensing, most of them are susceptible to location
spoofing, but not all. CROSS City is a smart tourism application
that rewards users for completing tourist itineraries and uses
location certificates to prevent attacks. In this case, the location
verification relies on the periodic collection of public Wi-Fi
network observations by multiple users to make sure the travelers
actually went to the points of interest.

In this paper, we introduce the Location-Certification-as-a-
Service (LoCaaS) approach, supported by a cloud-native and
improved location certification system, capable of producing
and validating time-bound location proofs using network data
collected by tourists’ mobile devices. We show that the system can
efficiently compute the stable and transient networks for a given
location that are used, respectively, to validate the location of a
tourist and to prove the time-of-visit. The system was deployed to
the Google Cloud Platform and was validated with performance
experiments and a real-world deployment.

Index Terms—Location Spoofing, Location Certificate, Secu-
rity, Cloud Computing.

I. INTRODUCTION

Modern mobile applications and services rely heavily on
location to provide users with context-aware information.
Practical use cases of these services include: map navigation,
weather services, location-based games, and smart tourism.
Several techniques can be used to provide location context to
applications. However, many of these services do not verify
the location information they consume, making them vulner-
able to various location spoofing attacks [1]. To combat and
provide protection against these attacks, location certification
systems [2]–[4] provide a means for producing reliable digital
certificates attesting an individual’s presence at a geographical
location and specific time. The generated certificates can
subsequently be utilized to validate location claims.

CROSS City [5] is a mobile application, developed for
a smart tourism use case, that utilizes location certificates.
Tourists use their smartphones to interact with existing infras-
tructure at points of interest in the city, periodically collecting
data about them. In the end, when a tour is completed,
rewards are awarded for completing it. However, rewards also
entice bad actors to illegitimately obtain them. To combat this,
CROSS relies on a combination of strategies for producing
location proofs, namely: scavenging of Wi-Fi identifiers, one-
time codes broadcast by Wi-Fi beacons, and user interac-
tion with kiosks. To reduce the need for the infrastructure
approaches, which are more expensive with beacons and
kiosks, the scavenging strategy [6] can be improved with
more frequent and timely data processing. This is where a

new and optimized cloud offering can make a difference.
We call this approach Location-Certification-as-a-Service (Lo-
CaaS). By leveraging the cloud, we can also improve the
reliability, availability, scalability of the system and make it
universally accessible, enabling location verification for many
more consumer applications.

In this paper we implement the CROSS City Cloud, a cloud-
native location certification system with support for time-
bound location proofs, serving as a testbed to demonstrate
the feasibility of LoCaaS capabilities in a public cloud.

II. BACKGROUND AND RELATED WORK

Maia et al. [5] originally proposed CROSS (loCation pROof
techniqueS for consumer mobile applicationS) providing a set
of location proof techniques for consumer mobile applications.
While doing itineraries through points of interest in the city,
tourists interact with Wi-Fi infrastructure using their mobile
devices, recording traces of information. Three logical entities
are defined: prover, that makes a claim with location evidence,
witness, which endorses a claim with their own collected
evidence, and verifier, that analyzes evidence and makes the
decision to issue a location certificate. CROSS used a client-
server model consisting of a mobile application and a central-
ized server with a database component. The server handles the
validation of the location evidence submitted by the tourists.
CROSS employs three strategies for location verification, with
different trade-offs of security versus infrastructure needs:
scavenging, with user-collected Wi-Fi traces compared against
the list of known networks at that location; TOTP, which
includes in the broadcast network SSID a time-based One-
time Password (OTP) similar to the one proposed in RFC
6238 [7] but requires the deployment of a customized Wi-
Fi AP (Access Point); and kiosk, which requires interaction
with a trusted device, such as a ticket booth, for example.

Claro et al. [6] studied the scavenging approach in detail and
collected a dataset of Lisbon hotspots. They also developed
data structures and algorithms to determine the location and
time interval of a visit leveraging diverse ad-hoc witnesses, to
observe long-lived and short-lived hotspots, and use reported
co-locations to prove the location or time-of-visit, respectively.
A prover’s location claim uses collected Wi-Fi AP SSIDs (ob-
servations) as evidence. The model also defines time windows
to bound the set of observations used for verification: epoch,
which is the most encompassing time frame, where only
observations collected within this time window will be used to
compute the stability of the Wi-Fi networks at each location
for the following epoch; period, which is a subdivision of
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an epoch, where only observations collected within this time
window will be used to compute the volatility of the Wi-Fi
networks at a given location; and span, which is a subdivision
of a period where prover and witness must share observations.
More formally, a span is the interval defined by the claimed
time-of-visit (tp) and an additional parameter delta (δ) between
tp−δ and tp+δ where evidence of co-location could be found.

For the LoCaaS cloud, we considered alternative architec-
tures: Lambda and Kappa. Both are suited to data processing
systems that require real-time data analytics. These systems
require asynchronous data transformations with minimal delay
without sacrificing the processing of historical data.

The Lambda architecture [8] has the goal of achieving
both real-time and historical data processing capabilities by
combining both batch and stream methods. The Lambda archi-
tecture is composed of three distinct layers: batch, speed, and
serving. The batch layer stores the immutable master dataset
and recomputes a series of batch views that facilitate the
computation of arbitrary queries over the dataset. The speed
layer is introduced to compensate for high latency updates of
the batch layer and it incrementally computes a series of views
of recent data. Queries are handled by the serving layer against
the merged results of both the batch and realtime views [9].
However, this process makes Lambda complex, because two
separate processing systems need to be indefinitely maintained
and synchronized to correctly integrate the missing updates
that occur during a batch job [10].

The Kappa architecture [11] was designed to overcome
the limitations of Lambda. In Kappa, there is no notion
of batch, every data is treated as a stream and therefore
only a stream processing engine is required. It consists of
two distinct layers: stream and serving. Data is fed to the
stream processing layer which is responsible for running the
real-time data processing jobs and then queries are handled
by the serving layer against these results. Data may still
be reprocessed by streaming through historical data. Kappa
achieves a general-purpose solution with both real-time and
reprocessing capabilities without the added complexity and
maintenance needs of two separate subsystems.

III. ARCHITECTURE

The CROSS client application fetches the catalog of
itineraries, logs the visits to each point of interest (sensed
Wi-Fi signals), and either stores data locally and sends it
later or immediately publishes it to the server. Based on this
flow, we could either opt for a minimal Lambda architecture
with solely batch processing, sufficient to provide us offline
data processing capabilities or a Kappa architecture ensuring
both offline and real-time data analytics. Solely with offline
or batch processing, any location proof requests made would
necessarily have to be purposely delayed until the end of the
current period, or multiple high latency batch jobs would have
to be triggered during short periods. To avoid this, we opted
for an extended Kappa architecture with three distinct layers:
domain, stream, and serving. The domain layer is added to
store and handle queries related to entity-relation data, such

as the user information, points of interest and tourism routes.
The stream layer stores the raw streams of Wi-Fi observation
data as atomic and immutable facts, kept for the epoch, with
publish timestamps to allow for recomputation of historical
views. Additionally, the stream layer produces stream views
containing precomputed aggregated results to assist stable or
volatile set queries. The serving layer indexes and uses the
precomputed results received from the stream layer to serve
the stable or volatile set query requests. Figure 1 illustrates
the resulting CROSS City server-side architecture.
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Fig. 1: Overview of the server-side architecture.

A. Collection of Network Observation Data

Observations collected by tourists must be continuously
integrated into the operational dataset. The data lifecycle is
illustrated in Figure 2 and it is split into two stages: Pre-
Live and Live. The Pre-Live stage is a finite time interval
with a total duration equal to the system epoch, referred to
as epoch0. Throughout this stage, only the trusted system
operators submit network observations of each existing point
of interest, with the goal of deriving the initial stable network
sets. The Live stage is a sequence of epochs, with the initial
one named epoch1. Throughout this stage, untrusted entities
interact through trip submissions. Each visit to a location
contains evidence (network observations) which is validated
against the claimed point of interest stable network set of the
former epoch. For epochn, the stable network set of epochn − 1

is used for validation. Only if the confidence threshold of the
claimed location is fulfilled, does the visit get accepted and its
network observations are integrated in subsequent stable and
volatile network sets.

B. Computation of Intermediate Observation Set

The main goal of the stream layer is to produce network
observation views to be queried efficiently, in a low-latency
manner. Hence, an incremental computation approach was
adopted over recomputation, avoiding the execution of func-
tion logic over the entire set of observations. To be efficient,
the views should contain intermediate results of the expected
queries: stable networks set (most observed networks, over an
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Fig. 2: Timing diagram for the CROSS City data lifecycle
across epoch0 and epoch1.

epoch, for a given point of interest) and volatile networks set
(least observed networks in a span interval, over a period, for
a given point of interest).

The key idea of the intermediate views is to maintain a
count of the number of observations per network at each
point of interest, for the most encompassing range of time.
Stable network sets are queried within an epoch with a
minimum granularity of a period. Volatile network sets are
queried within a span, and each of the possible span time
windows encompasses smaller intervals of size equal to the
greatest common divisor of the span set. For example let the
spans = {15min, 10min, 5min}, given any span interval
with size equal to one of the spans, it can be represented
as a union of 5 min (the greatest common divisor) intervals.
We leverage the fact that the set of spans are known before
going live to compute every possible time interval of greatest
common divisor size with minute granularity, during a period,
by aggregating network observations into one minute periodic
hopping time windows. This computation is feasible as it
results in, at most, 1440 windows per span interval (1440
minutes in a day) during computation time. Figure 3 represents
the pipeline, where each network observation is first pulled
from the stream layer storage component, then aggregated in
two separate tumbling and hopping windows, based on its
publish time (event time), with size equal to the period and
the greatest common divisor of the span set, then keyed and
summed per point of interest and network identifier (BSSID),
and finally written to the serving layer.

C. Computation of Stable and Volatile Observation Set

Both stable and volatile network set views are persisted
in the serving layer and partitioned by point of interest and
period, since the queries are expected to be tied to a particular
point of interest and require, at most, a period worth of data.
Hence, the usage of the horizontal partitioning method is an
efficient way to store these specific views. Each record in the
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Fig. 3: Processing pipeline for producing intermediate stable
and volatile network sets.

view maintains the number of observations for a particular
network within a time interval.

As soon as an epoch is completed, the period intermediate
stable set views that comprise the epoch are used to produce
a materialized view containing the top t% observed networks
over that epoch, off the critical path. Network observations
from past epochs remain unchanged, thus the creation of
an additional materialized view significantly improves the
efficiency when accessing a stable set. Furthermore, volatile
set queries utilize the intermediate volatile set views and the
stable set materialized view to filter the top t% observed
networks of the previous epoch and retrieve the bottom t%
observed networks within the claimed time interval. In the
implementation, we defined t=10% as the threshold value.

IV. CLOUD DEPLOYMENT

We now discuss the deployment selection for each compo-
nent of the three layers, based on the set of requirements it
must fulfill. Figure 4 details the deployed cloud architecture
on the Google Cloud Platform (GCP).
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Fig. 4: Overview of architecture deployed to the Google Cloud.

A. Domain Layer

The domain layer is comprised of two primitive compo-
nents: database (Domain Database) and compute (API Server).
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The database component of the domain layer stores both user
and tourism related data. We maintained the use of a relational
database, namely, PostgreSQL (HA PostgreSQL in Figure 4).

The compute (CROSS City Server in Figure 4) is the entry-
point for the remote invocations, and manages user sessions,
handles trip submissions and the respective location claim ver-
ification for reward attribution. The interface is implemented in
Java and follows the REST (REpresentational State Transfer)
style for web services. The client communicates with the API
server over HTTPS exchanging payloads defined and encoded
with protocol buffers1.

To mitigate cloud provider lock-in, we deployed both com-
ponents to a Kubernetes-based cloud service, specifically to
Google Kubernetes Engine (GKE), ensuring control over the
container orchestration, including networking, storage, and
observability of each component.

B. Stream Layer
The stream layer is comprised of two primitive components:

data ingestion and data processing. The data ingestion con-
sumes observation events, published by clients through the
API, for streaming into the data processing component. This
component is a message broker to avoid direct communication
between producers and consumers. The message broker must
support multiple producers and consumers on the same topic.
Message ordering is not necessary, since our intermediate
results are aggregated on event-time not dependent on their
delivery order. Replaying previous events is required, thus
message retention with period equal to an epoch is necessary.
To avoid the loss of any network observations and duplicates
from retries, at least once delivery paired with exactly once
processing semantics must be guaranteed. The Google Cloud
Pub/Sub component was selected, as it fulfills the stated
requirements (Cloud Pub/Sub in Figure 4).

The data processing component (the pipeline) processes the
network observations to produce the intermediate results for
the stable and volatile set queries. The pipeline aggregates
network observations on event-time in two separate tumbling
and hopping windows - corresponding to the stable and volatile
set windows. Late and duplicate network observations should
be expected. Aggregations should be performed on event-time,
not processing-time. State and resource management should
be automatic ensuring fault-tolerance and elastic scalability.
Additionally, since the data ingestion component solely assures
at least once delivery, we had to develop a way to guarantee
exactly once processing semantics. The Apache Beam2 open-
source framework for parallel, distributed data processing at
scale was selected for use. It can plug into the Google Cloud
Dataflow service to fulfills our needs (Cloud Dataflow in
Figure 4). Dataflow assures at least once semantics, by default.
However, to guarantee exactly once semantics, sources and
sinks must produce deterministic results. Deterministic out-
comes allows the engine to deduplicate unacknowledged trans-
formations that are retried. We ensure determinism through

1https://developers.google.com/protocol-buffers
2https://beam.apache.org/

the use of unique IDs and specific functions provided by the
services used.

C. Serving Layer

The serving layer is composed of a single primitive com-
ponent, the database, that persists the aggregate intermediate
results computed by the stream layer and serves query requests
related to the stable and volatile sets. Both queries make use
of a SUM aggregate function over the intermediate results
network observations count, and either filter the resultant
top 10% or bottom 10% observed networks, for the stable
and volatile set queries, respectively. To guarantee proper
inter-layer operability and connectivity the database should
be easily integrated with both the data processing stream
layer component (Cloud Dataflow) and the API domain layer
component (Kubernetes pod with the Java REST server).
Writes are expected to be made in real-time, so the database
component must support streaming records to it, and reads
may be performed in random order. Additionally, the database
must scale as the size of the intermediate results increases
and still be fault-tolerant. Based on these requirements, the
most suitable cloud service candidates are Google Bigtable
(Key-Value - NoSQL) and Google BigQuery (Relational -
SQL). Both services are fully managed with scalability, high
availability and fault-tolerance ensured by either service. We
opted for Google BigQuery mainly due to its support of ANSI-
standard SQL, granting us a higher level of expressiveness,
and the seamless Google Dataflow integration for streaming
records through a function with exactly once semantics (Big-
Query in Figure 4).

V. EVALUATION

We split the evaluation in two parts: the location certification
feasibility and performance assessment.

A. Experimental Setup

The selected benchmark tool and CROSS City Cloud
were packaged as Docker containers and deployed to distinct
Google Kubernetes Engine (GKE) clusters, comprised of one
and two nodes, respectively, physically isolated, in the same
cloud region. A comprehensive specification of the GKE
clusters used is shown in Table I.

B. Stable and Volatile Set Match as Location and Time Proof

To test the feasibility of our solution in providing location
and time-bound proofs, we used the LXspots dataset [6] with
network observation data collected in the city of Lisbon,
Portugal. Each point of interest has touristic relevance and
different characteristics, such as being outdoors or indoors,
sparse or central, and central or remote. The locations were:
Alvalade, Comércio, Gulbenkian, Jerónimos, Oceanário, and
Sé. Each smartphone used for data collection - Samsung
Galaxy S9, Huawei Mate 10 and LG V10 thinq - represents
a distinct prover, called Alice, Bob and Charlie. Each prover
stays at a location for 15 minutes. We used the dataset portions
of 7 consecutive days as epoch, from 2019-07-29 to 2019-08-
04, and 1 day as period, namely 2019-08-19.
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TABLE I: Kubernetes clusters specification.

Stack Machine
Family

Machine
Type OS Kernel

Version CPU RAM
Size

Disk
Size

Disk
Type

Additional
Disk
Size

Additional
Disk
Type

Network Docker
Ver

Kubernetes
Ver Region Locations

CROSS
City

Cloud

General-
-Purpose

e2-
-highcpu-

-4

Container-
-Optimized

OS
5.10.107

Intel Xeon or AMD EPYC Rome
@ 2.00+ GHz

(4)

4
GB

20
GB

Standard
persistent

disk
- - Default 20.10.12 1.21.11-

-gke
europe-
-west1

europe-
-west1-b,
europe-
-west1-c

k6
Benchmark

Tool

General-
-Purpose

e2-
-highcpu-

-8

Container-
-Optimized

OS
5.10.107

Intel Xeon or AMD EPYC Rome
@ 2.00+ GHz

(8)

8
GB

20
GB

Standard
persistent

disk
200 GB

Regional
Standard
Persistent

Disk

Default 20.10.12 1.21.11-
-gke

europe-
-west1

europe-
-west1-b

Real-Time
Client

General-
-Purpose

e2-
-highcpu-

-8

Container-
-Optimized

OS
5.10.107

Intel Xeon or AMD EPYC Rome
@ 2.00+ GHz

(8)

8
GB

20
GB

Standard
persistent

disk
200 GB

Regional
Standard
Persistent

Disk

Default 20.10.12 1.21.11-
-gke

europe-
-west1

europe-
-west1-b

1) Stable Set Match as Location Proof: To prove presence
at the location, the collected network observation set of
the prover is compared against the set of stable networks,
throughout a previous epoch, at the claimed point of interest.
Table II presents the percentage of match between these
two sets. Considering a 50% match threshold to determine
successful proof, all provers’ visits are attested at four out
of the six locations (except for Alice in Sé). Given the total
18 visits, this equates to a stable set success rate of 61.11%.
Stable sets produced through our solution seem viable to attest
presence at a location. Locations lacking stable networks such
as Jerónimos and Comércio, due to their characteristics, would
need a lower match threshold or the deployment of known
TOTP Wi-Fi APs.

2) Volatile Set Match as Time Proof: To prove the visiting
period, the scavenged network observation set of the prover is
compared against the set of volatile networks, throughout the
span, at the claimed point of interest. The match percentage
between these two sets is shown in Table II. The 15 minute
visit is split into four span intervals - 15, 5, 3 and 1 min.
Considering a 50% match threshold to determine successful
proof, visiting period attestation was achieved for all locations
in at least 50% of the claimed span intervals. Most notably,
75% of the claimed intervals in Comércio and Sé were
successfully attested. Given the total 72 claimed intervals, this
equates to a volatile set success rate of 63.89%, which shows
an effective attesting of the visiting period.

C. Domain Layer Scalability and Performance

To assess the performance and scalability of the domain
layer, comprised of the API and database deployed to a
cloud environment, we synthesized a test workload based on
expected user access patterns. We focus on the trip submis-
sion through the domain layer. The integration of scavenged
network observations through the stream and serving layer
is done asynchronously and will be evaluated separately in
Section V-D. The workload is comprised of two stages with
distinct load duration and ramping user concurrency. Each
stage executes an identical user flow: the users sign in, retrieve
existing routes, fetch a specific route, and submit a visit to one
of the route’s points of interest with a sufficient amount of Wi-
Fi AP evidences to achieve the route’s waypoint set confidence
threshold (75%), as to claim that location.

Three separate configurations of the domain layer were
evaluated. The baseline configuration is comprised of a single

TABLE II: Prover’s Stable and Volatile Set Match Percentage
for each Point of Interest. (percentage ≥ 50% in green and
< 50% in red)

Point-
-of-

-Interest
Prover

Stable
Set

Match

Stable
Set

Success Rate
(≥ 50.00%)

Volatile Set Match for
Claimed Span Interval

Volatile
Set

Success Rate
(≥ 50.00%)

15
min

5
min

3
min

1
min

Alice 100.00% 100.00% 87.50% 100.00% 90.00%
Bob 100.00% 0.00% 61.53% 50.00% 58.33%Alvalade

Charlie 92.85% 0.00% 30.76% 62.50% 46.15%
Alice 27.77% 20.00% 50.00% 0.00% 100.00%
Bob 30.55% 57.14% 100.00% 100.00% 100.00%Comércio

Charlie 27.77% 80.00% 0.00% 100.00% 100.00%
Alice 100.00% 0.00% 12.50% 50.00% 91.66%
Bob 60.70% 54.54% 41.66% 33.33% 46.15%Gulbenkian

Charlie 100.00% 44.44% 50.00% 78.57% 83.33%
Alice 9.30% 30.00% 50.00% 60.00% 75.00%
Bob 27.90% 9.09% 30.00% 25.00% 40.00%Jerónimos

Charlie 20.93% 54.54% 50.00% 33.33% 100.00%
Alice 85.00% 83.33% 100.00% 100.00% 100.00%
Bob 65.00% 0.00% 50.00% 50.00% 60.00%Oceanário

Charlie 75.00% 16.66% 14.28% 14.28% 50.00%
Alice 43.00% 60.00% 86.00% 33.33% 100.00%
Bob 50.00% 62.50% 66.60% 50.00% 75.00%Sé

Charlie 54.00%

61.11%

0.00% 33.33% 50.00% 75.00%

63.89%

replica (A), while the test configurations vary from one to
two replicas (B) and from one to four replicas (C). Since
preliminary tests demonstrate that the workload is expected
to be CPU bound, each configuration horizontally auto-scales
based on a pre-set average CPU utilization threshold (40%),
using the Kubernetes Horizontal Pod Autoscaler resource,
which provisions more server pods (replicas) to accommodate
a growing demand. During the execution of the workload,
the request response time, rate of requests and both the CPU
and memory usage metrics were collected using the k6 open-
source load testing tool.

1) System Performance and Scalability: Using the through-
put measurements collected per level of user concurrency,
we are able to model the scalability of the system with the
Universal Scalability Law (USL), shown in Equation 1, where
X stands for throughput, N for concurrent users, λ for perfor-
mance coefficient, σ for serial portion, and κ for crosstalk
factor. The USL [12] extends Amdahl’s law [13] (shown in
Equation 2) with an additional parameter (κ), allowing us to
model capacity degradation related to coherency losses. The
USL is defined in terms of two parameters rather than a single
one, accounting separately for both contention (serial work)
and coherence (crosstalk among workers in the system such
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TABLE III: Universal Scalability Law (USL) parameters for
each configuration.

Configuration λ σ κ

A 23.24 0.0409 0.0007583

B 23.57 0.0000 0.0006959

C 26.87 0.0000 0.0003925

as nodes, CPUs, threads, etc). The contention component (σ)
of the system ends up limiting asymptotically its speedup,
while the coherence portion (κ) limits the maximum system
achievable size.

USL : X(N) =
λN

1 + σ(N − 1) + κN(N − 1)
(1)

Amdahl′s law : X(N) =
λN

1 + σ(N − 1)
(2)

Table III summarizes the resultant performance coefficient
and scalability parameters estimations for each configuration,
with their respective model plots in Figure 5. By comparing
the estimated performance coefficients (λ) at the unitary load,
we can quantify the efficiency of the system across sizes.
Doubling the size of the system from both configuration A
to B and B to C we maintain approximately 51% and 57%
efficiency, respectively. Despite the efficiency values being
lower than expected, these can be explained by the fact that all
configurations start the test workload execution with the same
amount of replicas (1), and only when the scaling policy is
met do configurations B and C provision further resources.
Regarding the scalability of the system, the maximum useful
user concurrency of each configuration, calculated through
the Equation 3 (Theorem 4.3 Maximum Capacity [12]) in
relation to both scalability parameters, is 35, 37 and 50 users
for A, B and C, respectively. Based on the maximum useful
user concurrency, the maximum speedup achieved between
configuration A (247 req/sec) and C (684 req/sec) is of
approximately 2.77 times.
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Fig. 5: Throughput over Active Concurrent Virtual Users for
each system size configuration and respective USL model.

Nmax =

√
1− σ

k
(3)

2) Request Performance: From the collected mean latency
measurements plotted in Figure 6, we note that for a la-
tency threshold of 100 ms (the limit for giving the user the
perception that the system is reacting instantly [14], [15]),
both configurations A and B are only able to perform below
set threshold solely until 17 and 37 concurrent virtual users,
respectively. Despite an outlier peak at 41 concurrent virtual
users, configuration C is capable of performing below set
threshold for the full duration of the test workload. To further
quantify the user perception of the system, we plotted the
percentile-90 latency (filters top 10% worse latencies) in
Figure 7. Percentiles are useful to determine the expected
maximum response time for a percentage of requests/users. In
this case, only configuration C is able to withstand a set latency
threshold of 200 ms (double the set mean latency threshold),
i.e., 90% of users will experience a response time either as
fast or faster than 200 ms.
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As expected configuration C reaches a higher level of
resource utilization on both CPU (A - 2.38 CPUs, B - 3.90
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CPUs and C - 4.79 CPUs) and memory (A - 2.06 GiB, B -
2.37 GiB and C - 3 GiB), albeit significantly within the cluster
limits of 8 CPUs and 8 GiB.

3) Discussion: For this specific workload, configuration
C outperforms the other two in both system and request
performance metrics, as observed and predicted. Moreover,
we can infer that the system scales horizontally, maintaining
an acceptable level of performance and resource utilization.

D. Stream Layer Performance

To estimate the trade-offs made in performance, complete-
ness and cost of the unbounded Apache Beam pipeline solu-
tion, a scenario was setup consisting of real-time submissions
of a dynamic set of network observations as the collected
Wi-Fi AP evidence set of a tourist’s visit to a given point
of interest, simulating both user collection and submission.
During the execution of the test workloads a set of metrics
were collected including the rate of observations processed,
and the data watermark lag which refers to the amount of
time since the network observation with the latest publish time
(watermark) has been processed and outputted.

Note that, as detailed in Section IV-B, Dataflow assures at
least once semantics by default. However, to guarantee exactly
once semantics, modifications were made to ensure that the
Pub/Sub source and the BigQuery sinks were deterministic.
As the level of correctness is expected to have the most impact
on the performance of this layer, we quantified its impact by
comparing both of the pipeline processing semantics.

1) Impact on Throughput: In Figure 8, the plot shows
a speedup, of approximately 3.5 times, with at least once
semantics all throughout the pull/window phase (Figure 3)
in which each stage performs consistently at the same rate.
Nonetheless, as noted in the transform phase (Figure 3) plot
in Figure 9 the performance gains obtained in the pull/window
phase with at least once semantics are lost, and both semantics
end up performing at identical levels (approximately 1.0 times
speedup), indicating a potential bottleneck at these stages.
In the load phase (Figure 3) plotted in Figure 10, with at
least once semantics the pipeline is able to sustain the rate
of observations from the previous phase, as opposed to the
pipeline with exactly once semantics which is not able to
maintain the rate at this phase, more specifically at the Write
to Big Query stages (deduction of 165 times speedup).

2) Impact on Output Data Watermark: The data watermark
lag allows us to quantify the processing time in relation
to the publish time of an observation. In this specific test
workload, observations can be delayed at most 1 minute, thus
the expected data watermark lag is at least 1 minute plus the
cumulative processing time in the API server, Pub/Sub and the
pipeline. We observe that, as expected, both pipelines have a
data watermark lag of at least 1 minute, as plotted in Figure 11.

3) Discussion: The impact of using exactly once semantics
is significant on the achievable throughput, but this impact is
attenuated by the sum per key stage of the pipeline, which is
the combine function responsible for grouping and counting
the observations of the networks with the same SSID at
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each point of interest, and naturally present in both pipelines
regardless of their processing semantics. Additionally, the
main goal of our stream pipeline is to provide correct stable
and volatile network set view updates at a low-latency. With
exactly once semantics, we are able to ensure the highest
level of correctness. Moreover, the median data watermark lag
speedup of 1.05 times demonstrates the minor performance
impact of enforcing exactly once semantics over at least once
semantics. As a result, we conclude that the ability to provide
correct updates outweighs the performance impact for this
specific workload, allowing us to meet the main goal.

VI. CONCLUSION

In this paper, we presented a cloud-native location certifica-
tion system for consumer applications, capable of producing
and validating time-bound location proofs. We used CROSS
City, a smart tourism application as testbed, and demonstrated
the feasibility of a Location-Certification-as-a-Service (Lo-
CaaS) platform in a cloud computing environments. With the
provided services, CROSS is able to better ingest, aggregate
and integrate scavenged network observations in intermediate
network sets, to compute the stable and volatile networks
of a particular point of interest. Our contribution leveraged
public cloud computing technology to deploy the system. The
evaluation stressed each layer of the system in regards to
performance and scalability, through various scenario assess-
ments, and validated the solution for the expected use case.
Stable and volatile set match success rates of 61.11% and
63.89%, respectively, demonstrate the feasibility of using the
computed sets to validate the location and time claims. The
system is able to scale horizontally, maintaining the acceptable
performance level of under 100 ms under load with up to 50
concurrent users, at a 60% resource utilization. Additionally,
the pipeline solution is able to provide low-latency updates
while still enforcing exactly once processing semantics, which
is important for the location assurance algorithms.

In future work, we plan to provide an operator dashboard,
for the LoCaaS platform as a novel cloud offering that can be
used by future applications to achieve certified location and
thwart many attacks.
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