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ABSTRACT
Location-aware mobile applications are increasingly popular and
useful. However, as more services rely on location, there are con-
cerns that users may misreport their location to gain undue ad-
vantages. One way to prevent such location spoofing is to rely on
location certification systems. For example, SureThing uses Wi-Fi
or Bluetooth beacons and ad-hoc witnesses to allow a user to make
proof of location at a specific time and place. This approach can
be extended to smart spaces, such as smart buildings, managed
by platforms like DS2OS. In this work, we present SureSpace, a
new system that combines location certification with smart space
management, to verify the location of users in rooms inside smart
buildings. The new system relies on a prover mobile device and
on existing infrastructure in the room to act as signal beacons and
witnesses. The system is evaluated and shown to be effective using
light and audio signals to achieve security by diversity and thwart
location spoofing attacks.

CCS CONCEPTS
• Hardware → Sensors and actuators; • Information systems
→ Location based services; • Security and privacy → Access
control;
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1 INTRODUCTION
Mobile applications have gained popularity in the last decade, given
the increased ubiquity and pervasiveness of mobile devices in the ev-
eryday lives of people. Meanwhile, the Internet of Things (IoT) [13]
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is emerging as a network of interconnected smart devices that
collect and consume information for management and decision-
making purposes in smart environments, depending upon char-
acteristics like network availability or coverage area [5]. Mobile
devices can interact with IoT devices for added value services, but
security is a critical concern. Context attributes like identity, time
and location, need to be trusted to allow for good security deci-
sions when granting access to resources [1]. In particular, the use
of location in mobile applications is increasingly popular and useful.
However, in most cases, location is collected by the device itself,
and the user may tamper with the system to misreport location and
gain undue advantages when accessing services. For example, in
a laboratory facility inside a building, the user may perform this
attack to activate an equipment but without being inside the room,
as was required by the security policy.

To prevent location spoofing, location certification mechanisms
can be deployed to prove that a user is at a specific location, either
geographical or logical, at a specific time. SureThing [8] is a proof
of location system built with Java on the Android platform that uses
location measurements collected with GPS, Wi-Fi and Bluetooth
Low Energy (BLE) to certify location. SureThing makes use of
witness devices to verify and attest to the presence of users in
crowded physical spaces with diverse devices. In its current version,
it does not use existing infrastructure available at a location.

With this work, we introduce SureSpace, an extended version
of the original SureThing, designed to engage in smart environ-
ments in a secure way. To generate a location proof, beacons, which
are on-site devices, broadcast unique signals meant to be captured
by the prover device and by witness devices. If the captured sig-
nal matches the original signal to a certain threshold, the location
proof is deemed valid. Different approaches and techniques are sup-
ported for signal processing and matching. To discover, configure
and control beacons inside the smart space, we use DS2OS [11], a
smart space management framework. It provides a device discovery
mechanism to handle the high dynamism of smart environments,
allowing beacons and witnesses to be added or removed at run-time,
and used for location proofs.

In terms of security properties [3], the main objective of this
work is to preserve the integrity of location information, i.e., prevent
location spoofing; confidentiality is addressed by the use of standard
secure communication technologies at the data-link and transport
levels; availability is addressed by having the technique localized
in specific rooms with limited communication range, and through
the use of redundant devices.
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2 BACKGROUND
In this Section, we present the two systems that were composed to
build SureSpace: SureThing and DS2OS.

2.1 SureThing
SureThing [8] is a location certification system for Android de-
vices that lets users prove their location. Its design and architecture
are influenced by other location certification systems, such as AP-
PLAUS [15], and Crepuscolo [6], to the extent that they share some
core components. To locate the user, SureThing supports differ-
ent location estimation techniques, such as Geo Proof (geographic
location obtained from GPS or ANLP1), Wi-Fi Proof (via Wi-Fi
fingerprinting), and Beacon Proof (using BLE beacons).

The goal of location certification is to prevent location spoof-
ing, by requiring proof of a claimed location. Using their Android
smartphone, the prover says that it is at a specific location, and
the system challenges the claim, by asking for evidence, and/or one
or more witnesses at the location. The proof mechanism starts by
collecting some sort of signal, that is unique to the location at a
specific time, for example, something that is being transmitted over
the air. The prover collects the signal, with errors, and keeps the
evidence for later verification. When the prover wants to make
proof of location and time, they are challenged by the verifier. The
verifier can ask for the signal or some of its features, and compare
them to observations made by witnesses at the same location, or
compare with a known signal template.

Since the original SureThing paper, the work is being extended
to become a general-purpose framework. There have been other
applications implemented with the approach, some with fixed wit-
nesses [14], other with beacons that transmit pseudo-random signal
sequences and ad-hoc witnesses [10]. There is also work to provide
privacy protection to users and witnesses through the use of differ-
encial privacy [7] and pseudonyms [4]. However, until this current
work, SureThing lacked a way to leverage multiple signals and the
device orchestration capabilities available in smart buildings.

2.2 DS2OS
DS2OS [11] is a smart space orchestration framework focused on
the development of services for smart spaces. Smart devices deliver
valuable data (e.g. light or temperature conditions), and perform
useful work (e.g. turn a light or heating on). These capabilities can
be used to implement scenarios where smart devices work together
towards a common goal. The coordinated management of smart
devices, known as smart space orchestration, is possible if smart
devices can be interconnected to share data over a network.

In DS2OS, services are logical processes that deliver functionality
in a smart space, usually grouped in two categories: adaptation ser-
vices, that provide an interface to a smart device, and orchestration
services, that implement the logic behind pervasive use scenarios,
e.g., a single command to make a full room preparation for presen-
tation mode, including lights, temperature, shades and sound; and
then another command to revert back to meeting mode. In practice,
each smart device requires an adaptation service and smart devices

1The Android Network Location Provider, that uses both cell tower and Wi-Fi to
determine the device location.

are coordinated by an orchestration service. Regardless of their cat-
egory, services have unique identifiers in DS2OS, named after the
nature of the service (e.g., the adaptation service for a temperature
sensor could go by temperatureadaptationservice).

Smart devices produce and consume pieces of unstructured infor-
mation, known as context. To becomemanageable, context is shaped
into context models, that represent entities in a structured way. Con-
text models have context nodes, i.e. attributes, to describe properties
of the entity they are linked to. To determine its type, each con-
text node has a type attribute, which is, in fact, a context model
itself, usually simpler. To understand this better, consider a con-
text model of a temperature sensor, of type /sensor/temperature.
The context model should include, at least, two properties: isOn,
a /boolean for the operational status of the sensor, and value, a
/number used to represent the read temperature. The temperature-
adaptationservice would, then, include a context node of type
/sensor/temperature to represent the sensor. In other words, all
properties of the sensor’s context model would be implicitly in-
cluded in that context node.

Each service has its own context model, and inter-service com-
munication is achieved through the manipulation of context mod-
els. Simply put, a context model is a blackboard: some services
write on it, and other services read from it to achieve their ob-
jective. To prevent unauthorized operations, context nodes have
read and write permissions. Following the example, all services
should be able to change the value of isOn, so that the sensor can
be turned on. However, value must be read-only to all services but
the temperatureadaptationservice, authorized to update the
temperature value. In this light, context models are interfaces for
services, a sort of service contract that (1) specifies which attributes
can be read and/or written, via get and set operations, respectively,
and (2) by whom, according to an access control policy. For instance,
if an orchestration service wishes to get the current temperature,
it would have to call set(‘isOn’, true) on the context model of
the temperatureadaptationservice (to enable the sensor), and
then get(‘value’) to get the actual temperature.

Context models are stored in a distributed system over a peer-
to-peer network, known as the Virtual State Layer (VSL). Peers of
the network are called Knowledge Agents (KAs), and each agent
persists a subset of the context models. To be granted access to the
distributed knowledge, services register to a KA of their choice,
that becomes responsible for the respective context models. From
that moment on, these context models become available to other
services, even if connected to a different agent.

One important feature of DS2SOS is that services can subscribe
to specific context nodes to receive a notification when the node
value changes. This feature is useful, for instance, when a service
wants to take different actions depending on the new value. Another
key feature of DS2OS is dynamic service discoverability [2, 12], that
allows adaptation services to be discovered by different criteria:
type of smart device (e.g. temperatureadaptationservice), or
type of attribute (e.g. /boolean).

3 SURESPACE
SureSpace is a location certification system designed for smart
environments. Its architecture integrates elements from SureThing,
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that enriches SureSpace with an assortment of techniques and
technologies for location certification, and the DS2OS middleware,
that offers the possibility to configure and orchestrate devices in
smart spaces, as well as the possibility to dynamically discover
them at run-time.

3.1 Location Representation
Geocodes represent geographic locations on Earth, where each lo-
cation is assigned a unique identifier, used to distinguish between
entities. Usually, geocodes are short and human-readable. In SureS-
pace, we use geocodes to locate both the prover and the orchestrator
within the building. Our problem domain allows locations to be
represented with coarser granularity, because the focus is on deter-
mining if the prover is within the boundaries of the room, and not
necessarily at a specific location within that area.

SureSpace supports two geocode systems: Open Location Code
(OLC), and What3Words (W3W). By default, SureSpace uses the
OLC geocode system to encode locations into plus codes that rep-
resent squares on the surface of the Earth. The longer the code,
the smaller the square is, and, in its full length of 11 characters, a
plus code represents a 3 × 3𝑚 square. For example, 8CCGPVP5+GMW
describes the reception hall of a building in Lisbon. By shortening
the code to 8CCGPVP5+GM, it describes a larger square containing
the reception hall. This feature is useful to represent larger rooms
with a single plus code.

3.2 Components
Figure 1 outlines all the components of SureSpace, focusing on
communication flows between them. The main components are
presented following the expected interaction sequences.

Figure 1: SureSpace architecture.

3.2.1 Prover. The prover is a user of SureSpace that engages with
the system in order to prove their location. The prover device is the
device used by the prover during all interactions with the system.
It includes one or more signal receivers.

3.2.2 Certificate Authority. The Certificate Authority (CA) is the
long-term identity provider of the active entities of the system,
similar to CAs for website certification in the Internet. Entities
must register themselves to the CA to be deemed legitimate and
to be able to engage with SureSpace. Each entity generates a pub-
lic/private key pair. The private key is known only to the entity,
and is kept safe and secure on their side. The public key is used to
generate a certificate signing request in order to apply for a public
key certificate. If the request is approved by the CA, a public key
certificate is issued and assigned to the requester entity.

3.2.3 Orchestrator. The orchestrator is the entry point to SureS-
pace system, because it is the component that the prover first
reaches out to. It is at the center of the proof of location, responsible
for coordinating the process at the highest level, and preventing
malicious communication flows coming from unauthorized par-
ties. It implements diverse logical subprocesses that include: the
dynamic discovery of new orchestrated rooms, the dynamic dis-
covery of new beacons and their orchestration, and the delivery of
accurate information about a specific location proof. Orchestrators
run an orchestration service to communicate with the adaptation
services of the orchestrated beacons.

3.2.4 Knowledge Agent. A Knowledge Agent (KA) is a node in the
distributed knowledge network of DS2OS (cf. 2.2). More specifi-
cally, KAs are context repositories that persist relevant information
used by the orchestrator. To deliver room-level orchestration, each
orchestrated room has its own KA, that behaves like a proxy to the
room . No rooms share the same KA. Agents hold information about
their geographical location by running a localization service, so that
the orchestrator can discover them by location when looking for
new orchestrated rooms. Since beacons register themselves to the
closest KA in their vicinity, new beacons are easily discoverable and
accounted for. During a proof of location, an orchestrator will need
information about beacons and witness devices, like the value of
specific configuration attributes. That information becomes avail-
able to other KAs, since they are all nodes in the same distributed
knowledge network.

3.2.5 Beacon. A beacon is a device embedded into the trusted
infrastructure ready to be used in a proof of location (e.g. a smart
bulb). By default, SureSpace is not aware of existing beacons by
themselves, since they may not be directly connected to the system.
Thus, each beacon requires a proxy (adaptation service) to become
visible and controllable by the system. During the proof of location,
each beacon generates and broadcasts exactly one signal to be
captured by, at least, one corresponding receiver in the prover
device.

3.2.6 Signal. A signal is something produced by a beacon that
can be received by a corresponding receiver. For instance, visible
light, emitted by a smart bulb (the beacon), and acknowledged
by a light sensor (the receiver), could be used as a signal. The
definition of signal, however, is left open to avoid narrowing down
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the possibilities to a small set of conventional signals, paving the
way for future “out-of-the-box” ideas. Theoretically, any equipment
can be used as a receiver, provided it is able to receive signals from
a specific beacon.

3.2.7 Proof Evidence. A signal is generated based on a set of quirky
properties, that feed a deterministic signal generator. If these prop-
erties are disclosed, the original signal can be easily replicated.
Naturally, signals have different characteristics/features, and are
susceptible to deterioration induced by multiple factors during
their transmission. Moreover, receivers have limited capabilities,
and might not be able to acknowledge all characteristics of the
signal, but only a subset of them. Thus, what the receiver gets is
not the original signal, but a degraded representation of some of its
characteristics. In some cases, part of the characteristics of the sig-
nal can be successfully derived from the analysis and/or processing
of the degraded representation. To the derived information we call
proof evidence, because it represents the available information of
the original signal.

3.2.8 Receivers and Witnesses. To determine the legitimacy of the
location claim, we measure the accuracy of the proof evidence by
quantifying similarity between the original signal, that was trans-
mitted by the beacon, and the degraded representation, that was
received by the prover. To do that, we either need a template of the
original signal, or we require another representation of the signal,
captured by a witness that is embedded into the infrastructure at
the location. If the prover signal and witness signal representations
share the same set of signal characteristics, then we conclude that
the signals are similar, and that the prover received the transmis-
sion of the original signal. The beacon and witness devices are part
of the trusted infrastructure, and they are controlled by the same
adaptation service.

3.2.9 Verifier. The verifier is the last entity to be engaged in SureS-
pace. It measures the reliability of a location claim by assessing
the legitimacy of the proof evidence presented by the prover. The
verifier implements adequate criteria to compare different repre-
sentations of the same signal. However, there is no pre-determined
assessment criteria, because (1) the definition of signal itself re-
mains abstract enough to encompass a variety of beacons, and (2)
application-specific criteria might have to be taken into account.
Regardless of the implementation details, the verifier must output
a boolean value that represents the assessment result. If true, the
location evidence is deemed reliable, and, thus, the location claim
is accepted as a location proof.

3.3 Communication between Entities
Depending on their domain, entities communicate using different
underlying communication protocols. DS2OS entities (KAs and
services) communicate with the VSL via REST connectors (using
HTTPS for security). Communications between the SureSpace en-
tities (CA, orchestrator, and verifier) are supported by gRPC (in
Java)2, following a remote invocation paradigm [9]. gRPC uses
Protocol Buffers (protobuf ) to provide a platform-independent rep-
resentation of the remote interfaces, and it was chosen because

2https://www.grpc.io/

of its efficiency, and loose coupling between clients and servers.
Moreover, communications between SureSpace entities share a
common payload format, illustrated in Figure 2, that (1) allows for
a standardized process of message validation, and (2) fosters the
implementation of security protections for integrity, authentica-
tion, and non-repudiation. All messages hold information about
their source (field sender), and destination (field receiver), to pre-
vent message forwarding. Replay attacks are mitigated by using
a securely generated random number (field nonce). For integrity,
authentication, and non-repudiation purposes, a digital signature
is generated over the message (field signature) using SHA-512
with the private key of the source entity. To reduce the number of
interactions with CAs, the certificate of the source entity is attached
to the body of the message prior to the signing.

Figure 2: Message structure shared in SureSpace.

3.4 Entity Identification
Each SureSpace entity is assigned a public key certificate that is
part of a certificate chain that terminates with the SureSpace Root
CA. Public/private key pairs are generated using 2048-bit RSA,
and certificates are signed using SHA-512. Moreover, each entity is
identified by a hierarchical identifier, unique within the SureSpace
domain.

4 LOCATION CERTIFICATION
The location certification process encompasses three main stages:
pre-authorization, proof, and verification.

4.1 Pre-authorization Stage
A proof of location requires orchestration of a subset of beacons
scattered across a smart location, like a room. The orchestration
requires context information to be readily available at proof-time,
like which beacons are engaged with the proof of location.

The objective of this pre-stage, represented in Figure 3, is to
produce an authorization, requested by the prover and issued by an
orchestrator, that works as a token used later to trigger the proof
stage, while containing relevant metadata necessary for the proof
of location.

https://www.grpc.io/
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First, the prover device determines its compatibility with known
beacons (Device compatibility check step). A beacon is deemed sup-
ported by the prover device if and only if it has, at least, one compat-
ible receiver (usually a sensor, like a light sensor). Consequently, the
set of supported beacons depends on the hardware properties of the
prover device. The prover device estimates its location resorting to

Figure 3: Process diagram for the pre-authorization stage.

external mechanisms (Device location estimation step). For instance,
GPS can be used if the signal is strong enough. Upon locating the
prover device, GPS coordinates are then converted to a plus code
(refer to 3.1). In the absence of a suitable localization system (like in
GPS-constrained environments), scanning an on-site QR code with
the geocode of the room might be sufficient to locate the prover
within the building. In the end of this step, the prover requests a
proof authorization to the orchestrator (Request authorization step).

Following the validation of the request, the orchestrator deter-
mines which beacons are available at the location reported by the
prover (step Adaptation service discovery). Different orchestrated
rooms offer different beacons, discoverable via adaptation services
delivered within that room. To determine which beacons are avail-
able at the reported location, the orchestrator (1) lists all orches-
trated rooms, (2) determines the closest one to the prover, and (3)
discovers which beacons are available in that room.

Finally, the orchestrator selects beacons eligible for the proof of
location (Eligible beacons selection step). A beacon is eligible if and
only if (1) it is supported by the prover device, and (2) available at
the prover location. A beacon selection policy might filter eligible
beacons, depending on policy criteria (e.g. the security level of
the room). In the end of this step, the orchestrator generates an
authorization token, stores it for future use, and sends it to the
prover.

4.2 Proof Stage
This stage, represented in Figure 4, starts when the prover sub-
mits the proof authorization token to the orchestrator (step Submit
authorization).

Beacons generate signals based on a set of quirky properties, used
to feed a deterministic signal generator. To minimize the likelihood
of broadcasting the same signal twice, a seed value is generated in
an unpredictable way (step Generate random seed), and it is used
to populate quirky properties with pseudorandom values derived
from it.

Figure 4: Process diagram for the proof stage.

The orchestrator locks the adaptation services of the selected
beacons, and applies new pseudorandom values to the quirky prop-
erties (step Configure beacons). When beacons are ready, they start
broadcasting their signal. At the same time, the prover starts receiv-
ing the signal, as well as witnesses in the infrastructure. The prover
devices stores the received signal information, and the witnesses
capture and share their own signal information with the orches-
trator, by updating the corresponding properties of their context
models in the VSL, since they are part of the infrastructure.

Network latency has direct impact on the level of synchroniza-
tion between orchestrator and prover, since only upon clearance
from the orchestrator will the prover initiate the process. If desyn-
chronized, “dead times” may occur in the beginning (beacons are
broadcasting, but the prover is waiting for clearance) and in the
end of the process (beacons have ceased their activity, but receivers
remain active). This issue is mitigated in the verification stage,
without relying on clock synchronization.

4.3 Verification Stage
Theoretically, a proof of location is accepted if the proof evidence
is complete enough (with regard to all the signals broadcast by en-
gaging beacons), and accurate enough (if the extracted information
is in line with the information of the original signal). Even in op-
timal conditions, signal degradation will decrease the accuracy of
the proof evidence. Internal factors (e.g. receiver sensitivity) and
external factors (e.g ambient noise, topology of the orchestrated
room) might lead to a misrepresented, yet legitimate, proof evi-
dence. To account for such errors, a margin of error is considered
when comparing the trusted representation of the original signal
with its degraded representation.

To verify the location claim, the prover submits the evidence of
the different signals to the verifier. A final judgment is made, either
accepting or rejecting the location claim. If the claim is accepted, it
becomes a location proof.

5 IMPLEMENTATION
In this Section, we present the development platform and the details
about beaconing and verification.

5.1 Development Platform
We developed a prototype of SureSpace as a Java project, using
the JDK (Java Development Kit) version 11, and used Maven 3.6.3
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to manage the building process and the code dependencies. We
implemented a custom version of Ardulink 2, a Java solution for
coordinating Arduino boards3(required for the experimental setup),
and implemented the Certificate Authority, the Orchestrator, and
the Verifier from scratch (some code was partially inspired by exist-
ing work [8]). We also implemented all DS2OS services (adaptation,
localization, and orchestration services) by extending available tem-
plates. To bootstrap the VSL, KAs need to be launched one by one
to become peers (refer to 2.2). In practical terms, a KA is bundled
as an executable JAR file. However, the code of a KA was no longer
compatible with our setup, so we modified it, and recompiled it.
The prover was implemented as an Android mobile application, for
a richer user-experience, compiled in Java 8 against API level 30.

5.2 Beaconing Technique
To determine if a signal is appropriate for proof of location, we
classify it based on twometrics: difficulty of replication, and difficulty
of acknowledgment. Signals should be difficult to replicate without
knowing the quirky properties used for their generation. If signals
have noticeable patterns or are reused, a malicious party can easily
replicate them. At the same time, signals must be versatile enough
to account for common limitations shared by compatible receivers,
so that signals can be easily received by most witnesses.

We propose a technique based on time fragmentation to reach an
equilibrium between these two metrics of difficulty of replication
and difficulty of acknowledgement. During the proof stage, each
signal is broken into a fixed number of consecutive, same-length
fragments, and each fragment is generated based on a set of quirky
properties.

For simplicity, we adopt the following notation:
• 𝑏 ∈ 𝐵 denotes beacon 𝑏, in the set of supported beacons, 𝐵
• 𝑤 ∈ 𝑊𝑏 , 𝑏 ∈ 𝐵 denotes witness 𝑤 , in the set of witnesses
compatible with beacon 𝑏,𝑊𝑏

• 𝑓𝑏,𝑖 ∈ 𝐹𝑏 , 𝑏 ∈ 𝐵, 𝑖 ≥ 1 denotes the 𝑖-th fragment of the set of
fragments that compose a signal broadcast by beacon 𝑏, 𝐹𝑏
• 𝑞 ∈ 𝑄 𝑓𝑏,𝑖 , 𝑏 ∈ 𝐵, 𝑖 ≥ 1 denotes quirky property 𝑞, in the set
of quirky properties used to generate fragment 𝑓𝑏,𝑖 , 𝑄 𝑓𝑏,𝑖

• 𝑆𝑏 = 𝑓𝑏,1 ∥ 𝑓𝑏,2 ∥ . . . ∥ 𝑓𝑏,𝑛, 𝑏 ∈ 𝐵, 𝑖 ≥ 1 denotes a signal with
𝑛 ≥ 1 fragments, broadcast by beacon 𝑏

Algorithm 1 proposes a pseudocode of the technique. Since each
fragment is very likely to have a different set of quirky properties,
we assume that no two fragments share the same set of quirky
properties, resulting in the creation of unique signals.

Algorithm 1 Pseudocode of the technique.

𝑠 ← UnpredictableSeed();
for all 𝑏 ∈ 𝐵 do

𝑟𝑎𝑛𝑑𝑜𝑚 ← Random(𝑠);
for 𝑖 ← 1, 2, . . . , |𝐹𝑏 | do

for all 𝑞 ∈ 𝑄 𝑓𝑏,𝑖 do
𝑞 ← PseudorandomValue(𝑟𝑎𝑛𝑑𝑜𝑚);

end for
end for

end for

3https://github.com/Ardulink/Ardulink-2

5.2.1 Light Signal Time Fragmentation. Consider a light source
(e.g. a LED) used as a beacon for a proof of location, 𝑏𝑙𝑖𝑔ℎ𝑡 , that can
switch between states on and off with period 𝑃 ∈ [𝑃𝑀𝐼𝑁 , 𝑃𝑀𝐴𝑋 [,
measured in a convenient unit (𝑃𝑀𝐼𝑁 and 𝑃𝑀𝐴𝑋 are, respectively,
the lowest and the highest supported periods). In the proof stage,
the beacon broadcasts a signal, 𝑆𝑙𝑖𝑔ℎ𝑡 , split into 𝑛 𝑑-seconds frag-
ments. During each fragment 𝑓𝑙𝑖𝑔ℎ𝑡,𝑖 , 𝑖 = 1, 2, . . . , 𝑛, the beacon
switches between states with a pseudorandom period 𝑃𝑖 (the quirky
property), derived from the seed, forming a power-on and power-off
sequence with rates that vary between fragments.

Theoretically, 𝑃𝑖 can take any value in range [𝑃𝑀𝐼𝑁 , 𝑃𝑀𝐴𝑋 [, and
nothing prevents two pseudorandom periods from being equal or
close enough to generate similar or indistinguishable fragments.
To avoid this, we adopt an approach that (1) prevents reusing the
same period and (2) reduces the probability of picking periods too
close in the range.

As receiver, we consider a light sensor,𝑤𝑙𝑖𝑔ℎ𝑡 , capable of mea-
suring light intensity in a convenient unit, at a sampling rate not
less than 𝑃𝑖−1, ∀𝑖 . Plotting the measurements over time offers a rep-
resentation of 𝑆𝑙𝑖𝑔ℎ𝑡 based on one of its properties (light intensity).
The analysis of that representation may confirm significant varia-
tions in light intensity, which are an interpretation of the power-on
and power-off sequence.

5.2.2 Audio Signal Time Fragmentation. Consider an audio source
(e.g. a speaker) used as a beacon for a proof of location, 𝑏𝑎𝑢𝑑𝑖𝑜 . The
beacon can be programmed to play any song out of a predefined
set of𝑚 songs, and 𝑠𝑜𝑛𝑔𝐼𝑑 ∈ {0, 1, . . . ,𝑚 − 1} is the index of the
song to be played. This song is any regular song that plays on the
radio, and we consider it over any synthesized melody because
a song is more easily tolerated by the human ear for extended
periods of time. During its activity, the beacon broadcasts a signal,
𝑆𝑎𝑢𝑑𝑖𝑜 , with a single 𝑑-seconds fragment, and a pseudorandom
𝑠𝑜𝑛𝑔𝐼𝑑 ∈ 𝑄 𝑓𝑏𝑎𝑢𝑑𝑖𝑜 ,1

(the only quirky property) is derived from the
seed.

As receiver, we consider a sound sensor,𝑤𝑎𝑢𝑑𝑖𝑜 , capable of mea-
suring sound amplitude in a convenient unit. Plotting the measure-
ments over time offers a representation of 𝑆𝑎𝑢𝑑𝑖𝑜 based on one of
its properties (audio amplitude). The analysis of that representation
may confirm variations in amplitude and frequency that match the
song being played.

5.3 Supported Beacons
Adding support for a new beacon requires writing its context model
with all the configurable properties (the witness requires its own
context model too), and implementing the adaptation service, so
that the beacon can be discoverable.

Currently, SureSpace supports two beacons: light beacon, and
audio beacon; and next we go over the steps required to support
them.

5.3.1 Light Beacon. Based on the example in 5.2.1, we considered
a light beacon capable of switching between states on and off with
a configurable period. Figure 5 is a simplified context model of the
beacon, where isOn is a boolean used to control the beacon (if set
to true, the beacon is working), and switchingPeriod is the time
it takes for the beacon to switch between states (in seconds).

https://github.com/Ardulink/Ardulink-2
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1 <model type="/complex/beacon">

2 <isOn type="/basic/boolean"/>

3 <switchingPeriod type="/basic/number"/>

4 </model>

Figure 5: Simplified context model of a light beacon.

As witness, we considered a light sensor capable of measur-
ing light intensity at a configurable sampling rate not less than
switchingPeriod−1. Figure 6 is a simplified context model of the
witness, where intensity is the measured light intensity (in a
convenient unit), intensitySamplingRate is the sampling rate
at which the sensor is reading (in Hertz), and isOn is a boolean
used to control the witness (if set to true, the witness is working).
The orchestration service subscribes the intensity attribute on
the witness context model. Every time the attribute value changes
because of a new measurement, the orchestration service is notified.
At that moment, the value is timestamped (in milliseconds), and
stored in the orchestrator to compose the trusted representation of
the light signal.

1 <model type="/complex/witness">

2 <intensity type="/basic/number"/>

3 <intensitySamplingRate type="/basic/number"/>

4 <isOn type="/basic/boolean"/>

5 </model>

Figure 6: Simplified context model of a light witness.

As receiver, we consider any device capable of measuring light
intensity.

5.3.2 Audio Beacon. Based on the example in 5.2.2, we considered
an audio beacon capable of playing a specific song out of a set
of songs stored in a raw format without compression (like WAV).
Figure 7 is a simplified context model of the beacon, where isOn is
a boolean used to control the beacon (if set to true, the beacon is
working), and songId is the index of the song to be played.

1 <model type="/complex/beacon">

2 <isOn type="/basic/boolean"/>

3 <songId type="/basic/number"/>

4 </model>

Figure 7: Simplified context model of an audio beacon.

As witness, we considered a sound sensor capable of measur-
ing the sound amplitude at a specified sampling rate. Figure 8 is
a simplified context model of the witness, where amplitude is
the measured sound amplitude (in a convenient unit), amplitude-
SamplingRate is the sampling rate at which the sensor is reading
(in Hertz), and isOn is a boolean used to control the witness (if set
to true, the witness is working).

Since we have access to the songs in a raw format, it is pos-
sible to use this source as a witness signal instead of a captured
signal. In practice, this is as if the signal captured by the witness
did not contain any errors. Every amplitudeSamplingRate−1 𝑠 ,

the witness reads the sound amplitude from the sound file, and
updates the amplitude attribute on its context model, which has
been subscribed by the orchestration service. Every time the at-
tribute value changes, the orchestration service is notified. At that
moment, the value is timestamped (in milliseconds), and stored in
the orchestrator to compose the representation of the audio signal.

1 <model type="/complex/witness">

2 <amplitude type="/basic/number"/>

3 <amplitudeSamplingRate type="/basic/number"/>

4 <isOn type="/basic/boolean"/>

5 </model>

Figure 8: Simplified context model of an audio witness.

As receiver, we consider any device capable of measuring sound
amplitude.

5.4 Verifier Implementation
To verify a location proof, the verifier quantifies similarity between
different representations of the same signal: the one received by
the prover device, and the one captured by the witness in the in-
frastructure. If more than one beacon is used (and, thus, more than
one signal is involved), individual similarity estimates are weighted
for a final similarity estimate. The same can be done to support
multiple witnesses.

Based on the beacons we support, we use the MATLAB Engine
API for Java to quantify similarity. Next, we detail the approach
used for comparing representations of the same signal, for both
light signals and audio signals.

5.4.1 Light Signal Similarity. Representations may be sampled at
different rates, impeding their comparison. We bring them to a
common rate by upsampling the representation with the lowest
frequency, using linear interpolation. This process produces an
approximation of the representation that would have been obtained
by sampling at a higher rate.

Because clock synchronization is not a requirement, potential
delays between representations may exist. To align them without
relying on timestamps, we use correlation to determine where
representations overlap the most, and then align them.

At last, we normalize both representations, and calculate the
linear correlation coefficient between them, 𝑐𝑜𝑟𝑟𝑙𝑖𝑔ℎ𝑡 1, given by
Equation 1

𝑟 =

∑𝑛
𝑖=1 (𝑥𝑖 − 𝑥) (𝑦𝑖 − 𝑦)√︃∑𝑛

𝑖=1 (𝑥𝑖 − 𝑥)2
√︃∑𝑛

𝑖=1 (𝑦𝑖 − 𝑦)2
(1)

where 𝑟 is the linear correlation coefficient, 𝑛 is the number of
samples in the representations (they have the same size), 𝑥𝑖 and 𝑦𝑖
are the sample points, and 𝑥 and 𝑦 are the means of the samples.
This coefficient measures the linear relationship between the two
representations, and is used as an estimate of their similarity.

5.4.2 Audio Signal Similarity. Audio and light signals are funda-
mentally different, and so are their representations. For that reason,
we cannot follow the previous approach. Instead, after normal-
ization, we use dynamic time warping to resample and align the



SAC ’22, April 25–29, 2022, Virtual Event, J. Tiago et al.

audio representations. This algorithm stretches the two represen-
tations onto a common set of instants, such that the sum of the
Euclidean distances between corresponding points is smallest. Then,
we calculate the linear correlation coefficient between the aligned
representations, 𝑐𝑜𝑟𝑟𝑎𝑢𝑑𝑖𝑜 1, and use it as a first estimate of their
similarity.

To improve the estimate, we calculate the power spectrum of the
two representations. Simply put, a power spectrum is a frequency-
domain interpretation of an audio signal representation because
it describes the distribution of power (sound amplitude) into fre-
quency components. In this context, this information is relevant
because each song has a different time-frequency structure. Thus,
we calculate the linear correlation coefficient between the power
spectra of the two representations, 𝑐𝑜𝑟𝑟𝑎𝑢𝑑𝑖𝑜 2, and use it as a sec-
ond estimate of their similarity.

The two estimates are weighted for a final similarity estimate,
given by Equation 2

𝑤1 × 𝑐𝑜𝑟𝑟𝑎𝑢𝑑𝑖𝑜 1 +𝑤2 × 𝑐𝑜𝑟𝑟𝑎𝑢𝑑𝑖𝑜 2,𝑤2 = 1 −𝑤1 (2)

Weights 𝑤1 and 𝑤2 must be tuned based on a training set, since
they are necessarily beacon- and witness-dependent.

5.4.3 Combined Signal Similarity. For a final similarity estimate,
individual similarities are estimated according to Equation 3

𝑤3 × 𝑐𝑜𝑟𝑟𝑙𝑖𝑔ℎ𝑡 1+
𝑤4 × (𝑤1 × 𝑐𝑜𝑟𝑟𝑎𝑢𝑑𝑖𝑜 1 +𝑤2 × 𝑐𝑜𝑟𝑟𝑎𝑢𝑑𝑖𝑜 2),

𝑤4 = 1 −𝑤3

(3)

Weights𝑤3 and𝑤4 need to be tuned.

6 EVALUATION
In this Section, we present the experimental setup used to evalu-
ate the SureSpace prototype, describe the evaluation criteria, and
discuss the evaluation results.

6.1 Experimental Setup
For the experimental setup we used inexpensive equipment, with
less accuracy, but more representative of commodity equipment
that we expect to find in a smart building. We opted for a small, yet
representative, orchestrated area of our laboratory, represented in
Figure 9.

Figure 9: Experimental setup components and orchestrated
area.

Recall the notation introduced in 5.2, where 𝑏 denotes a sup-
ported beacon, and𝑤 a corresponding receiver. Based on the sup-
ported beacons, we used a Grove Chainable RGB Led V2.0 as light
beacon, 𝑏𝑙𝑖𝑔ℎ𝑡 , a Grove Light Sensor V1.2 as light receiver,𝑤𝑙𝑖𝑔ℎ𝑡 ,
and a JBL GO 2, connected to a Grove MP3 V2.0 module, as audio
beacon, 𝑏𝑎𝑢𝑑𝑖𝑜 . The audio witness, 𝑤𝑎𝑢𝑑𝑖𝑜 , relies on a template
sound file, eliminating the need for physical capture equipment
(cf. 5.3.2). For connectivity reasons, 𝑏𝑙𝑖𝑔ℎ𝑡 , 𝑤𝑙𝑖𝑔ℎ𝑡 , and the Grove
MP3 V2.0 module were all connected to a Grove Base Shield V2.0
for an Arduino Uno board. The prover device was a Huawei Mate
20 Pro Android smartphone, shipped with Android 10, equipped
with a built-in ambient light sensor, the light receiver,𝑤 ′

𝑙𝑖𝑔ℎ𝑡
, and a

microphone, the audio receiver,𝑤 ′
𝑎𝑢𝑑𝑖𝑜

. During the proof of loca-
tion, the prover device is steady in the center of the orchestrated
area, as depicted.

We built a dataset by running 80 location proofs under the same
controlled scenario. Each location proof delivered four signal rep-
resentations (two representations per signal, a trusted one and a
degraded one). To be assessed, a location proof is submitted to the
verifier (refer to 5.4).

In some cases, the verifier may classify location proofs incor-
rectly, either by accepting a location proof that should be rejected
(false positive), or, conversely, by rejecting a location proof that
should be accepted (false negative). To evaluate SureSpace, we con-
sider (1) the false positive rate (𝐹𝑃𝑅), which is the percentage of all
negatives that still yield positive, (2) the false negative rate (𝐹𝑁𝑅),
which is the percentage of positives that yield negative, and (3) the
success rate, which is the percentage of correct classifications. 𝐹𝑃𝑅
and 𝐹𝑁𝑅 are inversely proportional to the success rate, and the
verifier should focus on minimizing them.

To ensure the reproducibility of the experiments, the duration
of the proof stage was set to 30 seconds in all proofs of location (a
reasonable value in a human time-scale that works in a possible
meeting room scenario). Regarding the audio component, the bea-
con 𝑏𝑎𝑢𝑑𝑖𝑜 could choose between 20 different predefined songs, all
sampled at 44.1 𝑘𝐻𝑧 (refer to 5.2.2). Regarding the light component,
the light signals were broken into two 15-seconds fragments, and
beacon 𝑏𝑙𝑖𝑔ℎ𝑡 could switch between states with a pseudorandom
period 𝑃 ∈ [0.5, 7.5[ (refer to 5.2.1). The upper bound of the range

is 7.5𝑠 (=
15𝑠
2

) to ensure that light signal fragments generate, at
least, one complete on-off sequence, i.e., the beacon is powered on,
and then it is powered off for the same amount of time at least once.
The lower bound of the range is 0.5𝑠 to ensure compatibility with
all light receivers (based on the information we collected, 𝑤 ′

𝑙𝑖𝑔ℎ𝑡
,

the Android ambient light sensor, is the light receiver that reports
the lowest sampling rate of ≈ 2𝐻𝑧).

6.2 Optimal Weight Tuning
We started by dividing our dataset into two subsets: a training
set, and a test set. Following the Pareto principle, the training set
accounted for 80% of the dataset (i.e. 64 location proofs), and the
testing set accounted for the remaining (i.e. 16 location proofs).

We started by tuning weights𝑤1 and𝑤2 using the training set
(refer to 5.4.2). We crossed audio signal representations from all
location proofs in the training set, ending with 4096 combinations
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(64 × 64), from which 64 should be accepted (the number of legiti-
mate location proofs), and 4032 should be rejected (the number of
fabricated location proofs). We varied𝑤1 (recall that𝑤2 = 1 −𝑤1)
to find the optimal combination that would minimize 𝐹𝑃𝑅 + 𝐹𝑁𝑅.
Figure 10 plots the sum as a function of𝑤1. The local minima is at
𝑤1 = 0.661, which means that ⟨𝑤1,𝑤2⟩ = ⟨0.661, 0.339⟩ offers the
best success rate (𝐹𝑃𝑅 = 33.33% and 𝐹𝑁𝑅 = 37.50%). Replacing𝑤1
and 𝑤2 in Equation 2, the audio signal representations similarity
estimate is given by Equation 4

0.661 × 𝑐𝑜𝑟𝑟𝑎𝑢𝑑𝑖𝑜 1 + 0.339 × 𝑐𝑜𝑟𝑟𝑎𝑢𝑑𝑖𝑜 2 (4)
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Figure 10: Optimal value of𝑤1.

Then, we tuned weights 𝑤3 and 𝑤4 (cf. 5.4.3). Following the
same approach, we crossed audio and light signals from all location
proofs in the training set, and varied𝑤3 (recall that𝑤4 = 1 −𝑤3)
to find the optimal combination that would minimize 𝐹𝑃𝑅 + 𝐹𝑁𝑅.
Figure 11 plots the sum as a function of 𝑤3. The local minima is
at 𝑤3 = 0.436, which means that ⟨𝑤3,𝑤4⟩ = ⟨0.436, 0.564⟩ offers
the best success rate (𝐹𝑃𝑅 = 7.50% and 𝐹𝑁𝑅 = 6.25%). Replacing
all weights in Equation 3, the final similarity estimate is given by
Equation 5

0.436 × 𝑐𝑜𝑟𝑟𝑙𝑖𝑔ℎ𝑡 1+
0.564 × (0.661 × 𝑐𝑜𝑟𝑟𝑎𝑢𝑑𝑖𝑜 1 + 0.339 × 𝑐𝑜𝑟𝑟𝑎𝑢𝑑𝑖𝑜 2)

(5)
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Figure 11: Optimal value of𝑤3.

6.3 Approach Effectiveness
We validated our approach by testing our signal representation
similarity estimate against the testing set. We crossed light and
audio signal representations from all location proofs in the testing
set, ending with 256 combinations (16 × 16), from which 16 should
be accepted (the number of legitimate location proofs), and 240
should be rejected (the number of fabricated location proofs). In

the end, the verifier classified location proofs correctly in 94.78% of
the cases, with rates 𝐹𝑃𝑅 = 5.06% and 𝐹𝑁𝑅 = 15.63%.

For demonstration purposes, we consider the two light signal
representations of a location proof accepted by the verifier. Figure 12
plots the normalized light intensity read by the witness,𝑤𝑙𝑖𝑔ℎ𝑡 , and
the prover receiver,𝑤 ′

𝑙𝑖𝑔ℎ𝑡
), shown in different colors. It becomes

evident that the light signal is split into two fragments, with the
second fragment starting at around 15 𝑠 . At that moment, the rate
at which 𝑏𝑙𝑖𝑔ℎ𝑡 changes between states on and off decreases.

0 5 10 15 20 25 30

Time (s)

-2

0

2

N
or

m
al

iz
ed

in
te

ns
ity

 wlight

 w' light

Figure 12: Light signal representations overlapping.

The witness signal representation is sharper and has more spikes
than the prover signal representation. This difference can be ex-
plained by the very different sampling rates at which both work.
Based on the information we collected during the experiments,
𝑤𝑙𝑖𝑔ℎ𝑡 works at ≈ 14 𝐻𝑧, while 𝑤 ′

𝑙𝑖𝑔ℎ𝑡
works at ≈ 2 𝐻𝑧. For that

reason, the witness is aware of the beginning of the second frag-
ment, while the prover misses it, since it occurs in-between sam-
ples. Notwithstanding, representations overlap, suggesting both the
prover and the witness were exposed to the same light conditions.

Additionally, consider the two audio signals representations of
a location proof accepted by the verifier. Figure 13 plots, in differ-
ent colors, the normalized sound amplitude read by the witness
based on a template, 𝑤𝑎𝑢𝑑𝑖𝑜 , and the prover receiver, 𝑤 ′

𝑎𝑢𝑑𝑖𝑜
. Al-

though both representations overlap, the witness representation
has stronger and neater variations in sound amplitude, while the
prover representation looks more sketchy, with periods of constant
sound amplitude. Once again, this is a consequence of sampling the
same sound at different sampling rates. Based on the information
we collected during the experiments, 𝑤𝑎𝑢𝑑𝑖𝑜 works at ≈ 30 𝐻𝑧,
while𝑤 ′

𝑎𝑢𝑑𝑖𝑜
works at ≈ 12 𝐻𝑧. The power spectra of both repre-

sentations, depicted in Figure 14, shows prominent peaks in magni-
tude occurring around the same frequencies. This suggests that the
prover and the witness were capturing the same song being played
by 𝑏𝑎𝑢𝑑𝑖𝑜 .
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Figure 13: Audio signal representations overlapping.
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Figure 14: Audio signal representations spectra overlapping.

6.4 Resistance to Attacks
We consider that SureSpace has successfully resisted an attack
when it rejects illegitimate location proofs. In other words, we are
interested in the number of false positives, and, thus, consider 𝐹𝑃𝑅
as the metric to evaluate SureSpace’s resistance to attacks.

Based on the attacker model, we consider two attackers that try
to prove their false presence by manipulating signals:

A1 Receives the signal from exactly one random beacon, but
not from the others (beacons may have different radius of
action);

A2 Combines legitimate signals representations to derive syn-
thesized proof evidence from them.

Attacker A1 can either (1) receive the light signal but not the
audio signal, or (2) receive the audio signal but not the light signal.
Based on Equation 5, we confirm that signals have similar weights
(0.436 versus 0.564), so we expect location proofs to be rejected if an
attacker only provides the representation of one of the signals. To
simulate attacker A1, we used the 240 fabricated location proofs that
should be rejected by the verifier, and, according to the scenario,
(1) or (2), we discarded one of the signal representations when
submitting the location proof to the verifier. In both scenarios, we
determined 𝐹𝑃𝑅 = 0.00 % — it means that the verifier successfully
rejected all location proofs fabricated by the attacker.

To simulate attacker A2, we combined legitimate signal represen-
tations from different location proofs to fabricate new illegitimate
location proofs. In 6.3, we determined that 𝐹𝑃𝑅 = 5.06 %. In fact,
combining signals from different location proofs is not an effective
attack because the verifier is capable of telling they were generated
for different location proofs (since the likelihood of broadcasting
the same signal is low).

7 CONCLUSION AND FUTUREWORK
In this paper, we presented SureSpace, a location certification sys-
tem for smart environments. It leverages the capabilities of both
SureThing, that defines procedures and techniques for location
certification, and DS2OS, that provides control over diverse smart
devices for orchestration purposes. SureSpace relies on smart de-
vices that broadcast preconfigured signals, and receivers to capture
these signals, to certify location at a specific time and place. The
system was evaluated in laboratory conditions with inexpensive
Arduino-compatible equipment. It was shown to be effective using
light and audio signals, with a success rate up to 94.78%. Moreover,
we evaluated the resistance to attacks by simulating the capabilities
of possible attackers, and thwarted all attempts.

As future work, we consider the possibility of implementing
more complex methods for optimal weight tuning, that may fur-
ther improve the effectiveness of SureSpace. We also consider a
new way to verify location proofs based on a challenge-response
approach where, instead of disclosing the complete captured signal
to the verifier, the prover could be challenged to answer queries
about specific components of the location proof. For example, and
considering the light signal, we could consider questions like “For
how long was the beacon in the on state?”.

Finally, SureSpace could be further evaluated in a smart building
environment outside the laboratory, with a check-in application for
physical meetings, with an assessment of the full user experience.
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