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Abstract—Location is an important attribute for many mobile
applications but it needs to be verified. For example, a user of a
tourism application that gives out rewards can falsify his location
to pretend that he has visited many attractions and thus receive
benefits without deserving them. To counter these attacks, the
system asks users to prove their location through witnesses, i.e.,
other devices that happen to be at the location at the same time
and that can be partially trusted. However, for this approach to
be effective, it is important to keep track of the witness behavior
over time. Many crowdsourcing applications, like Waze, build
up reputations for their users, and rely on user co-location and
redundant inputs for data verification.

In this work, we present SureRepute, a reputation system
capable of withstanding reputation attacks while still maintaining
user privacy. The results show that the system is able to
protect itself and its configuration is flexible, allowing different
trade-offs between security and usability, as required in real-
world applications. The experiments show how the reputation
system can be easily integrated into existing applications without
producing a significant overhead in response times.

I. INTRODUCTION

Nowadays, information systems are depending more on
geographical location, as determined by the mobile device
of the user [1]. The most common use case involves a user
sharing its location with a server, and the server performs a
computation and returns data or provides a service to the user.
It may be important to be sure that the user was in fact in
that physical location at that specific time, otherwise a user
could just lie about its location and get undeserved benefits.
For example, in a scenario where users receive rewards for
going to visit certain locations, a user could just say that he
was at any location to get rewards without really needing to
be there.

Location certification systems are able to verify if a location
claim is valid or not through evidence, usually collected by or
resulting from interactions with other devices, called witnesses.
For this approach to be effective, many and diverse witnesses
are necessary. One of the ways to have witnesses without a big
investment is to use crowdsourcing [2], i.e., rely on the devices
of other users. The verification of location still needs to be
performed, because there is the possibility of users performing
tasks incorrectly by mistake or intentionally. To identify and
prevent this problem, it is important to have some way of
knowing if a user is trustworthy, i.e., if it has an history of
correct behavior. This can be achieved by keeping track of a
reputation for each user [3].

The SureThing project [4] addresses the need for creating
and validating location certificates so that devices can make
proof of their location. The project provides a framework with
data formats and utility libraries available to multiple applica-
tions, such as advertising [4], smart tourism [5], smart vehicle
inspections [6], and medical appointment verifications [7]. A
reputation system [3] can help these systems by providing an
up-to-date reputation value when they are deciding to accept
a location claim.

Reputation systems gather feedback that reflects user pre-
vious behavior, aggregate that feedback and map it into a
reputation score that reflects the user behavior. Reputation
mechanisms can encourage trustworthy behavior and discour-
age participation by those who are unskilled and dishonest [3].
Despite their potential, reputation systems have their own
intrinsic problems related with privacy and reputation attacks
that need to be addressed.

The main goal of this work was to create a reputation
system, called SureRepute, that can be integrated into crowd-
sourced applications, such as the SureThing domain applica-
tions. SureRepute can provide reputation values and is capable
of defending against reputation attacks while still ensuring
privacy to its users.

II. BACKGROUND AND RELATED WORK

According to Mousa et al. [8], reputation is the collective
assessment of how much an individual or an entity can be
trusted. It is possible to compute reputation scores using
feedback that members provide of each other, resulting in
a reputation system that allows members to be accounted
for their actions. Hoffman et al. [9] further explains that
reputation can be a source to build trust in the participants, by
allowing parties to decide how much they trust a participant
in a given context and encouraging trustworthy behavior while
discouraging dishonest participation

Abdel [10] and Mousa et al. [8] present some methods used
in reputation models, that allow to create scores that reflect
the users behavior. The most relevant model is the Bayesian
model [8] [10] [11].

Jøsang and Ismail [11] presented a system called beta
reputation system, that uses a Bayesian model which combines
feedback by using beta distributions to allow for the derivation
of reputation ratings. A beta distribution is a family of contin-
uous probability density functions defined on the interval [0,
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1], and indexed by two parameters α and β. The probability
expectation value of the beta distribution is given by:

E(α, β) =
α

(α+ β)
(1)

In the beta reputation model α = r + 1 and β = s + 1,
where r is the collective amount of positive rating and s is the
collective amount of negative rating, allowing to represent the
reputation score of a user. The reputation score can then be
calculated based on Equation 1. and is expressed as:

ReputationScore(i) = E(ri, si) =
ri + 1

ri + si + 2
(2)

Where the reputation is in the range of [0,1] and the value 0.5
represents a neutral rating.

Old feedback may not always be as relevant to the reputation
score, because the agent may change its behavior over time.
It is important to have a model, where old feedback is given
less weight than more recent one. This can be achieved by
introducing a forgetting weight, λ, to r and s:

r = ri−1 ∗ λ+ ri and s = si−1 ∗ λ+ si (3)

A. Reputation Attacks and Defense Techniques

Entities can bias the credibility of a reputation system in
diverse ways. It can be done deliberately or not and isolated
or in collusion with others. Koutrouli and Tsalgatidou [12],
divide reputation attacks into three main categories: Unfair
recommendations are recommendations that do not share
honest feedback, which can be done by individual users
or in collusion, where a group(s) of malicious users tries
to destabilize the system; Inconsistent behavior is done by
users to create a false impression of themselves, divided into
two types: Traitor, where the user behaves properly until a
strong positive reputation is gathered and then deceives others.
Discriminators, where the user behaves properly with most
entities and misbehave towards a subset of them; Identity
Management attacks exploit the type of identity management
in used and the anonymity level provided by the system. There
are four types of attacks: Whitewashing, where a user discards
its identity and enters the system with a new one to avoid bad
reputation. Sybil Attack, where a user create multiple identities
to provide large amount of false feedback. Impersonation,
where a user portrays itself as another; Man-In-The-Middle-
Attack, where a user tamper with the messages of others.

Koutrouli and Tsalgatidou [12] also present defenses tech-
niques that can be deployed to reduce or prevent these attacks.
The most relevant are:

• Incorporate time in reputation estimation: to reduce the
effect of inconsistent behavior by a Traitor;

• Penalize oscillatory behavior: making negative ratings
have more weight than positive ones in the score to reduce
the effect of inconsistent behavior done by a Traitor;

• Controlled Anonymity: conceal the identities between
users (but not from the administrator) can reduce the
effect of Unfair recommendations and Discriminators;

• Cryptographic signatures: to reduce the affect of Un-
fair recommendations, Impersonation and Man-in-the-
middle-attack;

• Barriers to create and change identity by implementing
entry fees, requiring proof-of-work, not allowing the rep-
utation of a user to fall behind the one of a newcomer, and
give a low reputation value to newcomers, to discourage
Unfair recommendations, Sybil attack and Whitewashing.

B. Privacy-Preserving Techniques
The privacy of a user has to do with its ability of being

anonymous and not let other users record its transactions and
recommendations [12]. However, a reputation system only
works if the reputation is linked in some way to the identity
of the user. The more information is linked to the user the less
anonymity and privacy there is, but also there is an higher level
of accountability, increasing the credibility of the reputation
estimation.

The use of pseudonyms is a common mechanism used to
protect the anonymity and privacy of the participants [13]. In-
stead of transmitting a real identifier of the user, all interaction
with the application is performed under an alias. Pseudonyms
are a good trade-off between trust and privacy, which allow
correlating a pseudonym with different transactions, while still
maintaining the user’s real identity hidden [14].

Calado and Pardal [15] present a reward system based
on points where you can create tasks for other users to
do in exchange for points. To assign points to the users it
uses pseudonyms as a privacy mechanism which allows for
the replacement of real names to identifiers with non-related
values.

Ma et al. [16] propose a decentralized privacy-preserving
reputation management system for mobile crowd-sensing, in
which edge nodes are deployed regionally and are responsi-
ble for collecting data as well as maintaining a consortium
blockchain. Homomorphic encryption, which is a crypto-
graphic technique that allows for performing computations
on encrypted data without decryption, is used to update and
maintain its reputation values.

C. Location Certification Systems
Location certification systems provide ways to attest and

verify that a user is where s/he is saying s/he is.
Nosoushi et al. [17] presents a distributed location proof

scheme called PASPORT, where mobile users can act as
provers or witnesses, allowing for the generation of location
proofs for each other. PASPORT integrates a form of rep-
utation that is used for witness selection, where the prover
calculates entropy-based trust score for the witnesses based on
its location proof generation history. The score is high when
a witness provided a few location proofs to that prover, and
its low when it has issued many location proofs to that same
prover. Only users that have a score above a specific threshold
can be selected as witnesses.

SureThing [4] framework for location certification that
provides data formats and utility libraries, used by multiple
applications:
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• STOP [6] - a cargo vehicle inspection system with
tamper-proof records to prevent location spoofing attacks;

• SurePresence [7] - allows a user to prove his location
when interacting with a kiosk. The kiosk represents a
witness of the system that endorses the prover claims;
and the server acts as the verifier and is responsible for
storing verified location certificates;

• CROSS [5] - provides tourist itinerary verification. The
application logs Wi-Fi scans during visits to locations.
At the end of the trip, the application sends the collected
data to the server for verification. A new strategy was
also recently added by Grade et al. [18] that allows peer-
to-peer witnessing between nearby users in specific stops
in the itinerary.

III. SUREREPUTE: DESIGN

The design of SureRepute includes the attack model, the
assumptions and requirements identified, the general architec-
ture of the system, as well as the privacy protections and the
score calculation technique.

A. Attack Model

We created an attack model that describes what attacks are
a problem in our solution and how they will be dealt with
based on what was presented in Section II-A.

SureRepute assumes that the recommendations, i.e., the user
behavior reports, are always submitted by a trusted entity, that
belongs to the infrastructure of the system. For example, in
CROSS [5], the server is a trusted entity that can send recom-
mendations to SureRepute based respectively on the rejection
and acceptance of the collected data of the trip and suspicious
behavior. We protect the confidentiality and authenticity of all
exchanged messages with robust cryptography, namely, TLS
with mutual authentication.

The recommenders are always trusted, so unfair recommen-
dations are not considered a threat as the recommendations are
never considered malicious. The attack model will focus on
inconsistent behavior and identity management related attacks.

The reputation attacks on SureRepute and the strategies that
are going to be employed by the system to prevent or reduce
their impact are: have a malicious action affect much more
the score than a good one; use pseudonyms but keep a global
reputation that is shared among different domains, making bad
behavior in a specific domain affect the reputation score in
general; reduce incentive to create new identities by giving
the smallest score possible to newcomers and have a slow
build-up of reputation.

B. Requirements

• R1 - Provides scores that reflect the users behavior;
• R2 - Capable of being resilient to inconsistent behavior

and identity management attacks;
• R3 - The same user in different domains maintains a

shared reputation that reflects the user general behavior;
• R4 - Use pseudonyms to guarantee privacy to the users.

C. General Architecture

The solution was implemented using a client-server model
that can be incorporated into each of the SureThing application
domains represented in Figure 1, namely, CROSS, SureP-
resence, and STOP. The client is called SureRepute-Client,
and it will serve as a way for an application domain to
communicate with its own server, which is called SureRepute-
Server. There is one instance of the SureRepute-Server inside
each application domain. Servers will communicate with each
other to maintain a shared reputation of users that are present
in different application domains. The clients also interact with
an identity provider that is responsible for making the identity-
pseudonym translations and with the CA whenever it needs a
new valid certificate.

CROSS

SureRepute-Client

SureRepute-Server

(STOP)

CROSS-Server

SurePresence

SureRepute-Client

Central-Server

STOP

SureRepute-Client

Central-Server

SureRepute-Server

(SurePresence)

SureRepute-Server

(CROSS)Identity Provider

CA
SureRepute-Servers

Application Domains

Fig. 1. SureRepute integration with SureThing Framework.

D. Assumptions

• SureRepute-Server always updates the score of
pseudonyms based on the behavior reports received;

• Entities that make recommendations of user behavior
always submit accurate reports;

• Accounts with the same email in different application
domains are always the same person;

• All entities can always communicate with other entities
and no entity ever permanently fails;

• All messages that pass the Confidentiality, Integrity, Au-
thenticity and Freshness tests are considered secure;

• Only trusted entities can interact with the Certificate
Authority (CA).

E. Privacy Protection

The privacy of the users about their identity and their
behavior is ensured by separating which information each
entity has. The identity provider is used as a highly trusted
entity that stores the relationship between real identities and
pseudonyms and only responds to requests from trusted ap-
plication domains. It returns the pseudonym encrypted with
the appropriate SureRepute-Server public key to ensure that
a client cannot associate the pseudonyms with the user’s real
identity. The SureRepute-Server also has no access to the real
identity of the user as it only uses the pseudonyms not the real
identity of the users. Furthermore, it also does not store the
history of all reported behaviors individually, instead it keeps
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two variables that represent the cumulative value of good and
bad behavior.

F. Score Calculation Technique

Our reputation score calculation will follow mainly the
binomial Bayesian model, with some modifications. We will
use Equation 2 to calculate the reputation score, and use a
modified version of Equation 3 to calculate r and s, which
are respectively the collective amount of positive and negative
rating, to introduce different levels of behavior reports and
different forgetting weights for the positive and negative be-
havior (λr and λs). SureRepute-Server can receive four types
of behavior reports, and each will make a different change to
r and s. The four types are:

• Well Behaved: where the user behaved as intended. In
this case r and s will be updated with: s = si−1 ∗λs and
r = ri−1 ∗ λr + 1.

• Accidentally Malicious: where the user behaved mali-
ciously, but could be due to factors outside of the user
control. In this case s and r will be updated with:
s = si−1 ∗ λs + 0.5 and r = ri−1 ∗ λr

• Intentionally Malicious: where the user purposely be-
haved maliciously. In this case s and r will be updated
with: s = si−1 ∗ λs + 1 and r = ri−1 ∗ λr

• Critically Malicious: where the user purposely behaved
maliciously in a critical situation. In this case s and r will
be updated with: s = si−1 ∗ λs + 2 and r = ri−1 ∗ λr.

The value of the forgetting weighs for r and s will be
different, making good reports be forgotten much more quicker
than bad reports, which can make bad behavior affect more
the score while also making recent behavior matter more than
old behavior to provide defense against the traitor attack.

The initial values given to s and r will also provide the
initial setback before the user interactions with the system
start to reflect its behavior. The higher the initial s, the more
a newcomer needs to interact with the system before starting
to be trusted, and thus it better defends against Sybil and
Whitewashing attacks. However, it also discourages newcom-
ers, reducing usability.

IV. SUREREPUTE: IMPLEMENTATION

All entities of SureRepute were developed in Java, which
runs in most operating systems and hardware platforms. We
used REST software architectural style for web services. For
the interface description language and canonical data format
we decided to use protocol buffers, a data representation
language and platform neutral, extensible mechanism for se-
rializing structured data, proposed originally by Google, but
now open-source. To assure data persistence and avoid data
corruption, we decided to use PostgreSQL as the database
language for the Identity Provider and SureRepute-Server.

We also used OpenAPI, which is a language-agnostic inter-
face description language for REST APIs that allows users to
discover and understand the capabilities of the services through
the generated documentation.

Let us now look into each SureRepute entity in more detail.
The SureRepute-Client works like a library to make remote
calls to SureRepute:

• Get Score: obtains the score from SureRepute of one
or more users (a value in the range [0, 1]);

• Report Behavior: submit behavior reports for a
given user. The behavior reports can be: Well Behaved
Report; Accidentally Malicious Report; Intentionally Ma-
licious Report; Critically Malicious Report.

To do these actions, the first thing SureRepute-Client does
is to request to the Identity Provider the associated pseudonym
encrypted using the public key of the SureRepute-Server. The
SureRepute-Client also stores in a cache the recent translations
of user identity:encrypted pseudonym, and so, if the encrypted
pseudonym is already in the cache the interaction with the
Identity Provider does not happen. After having the encrypted
pseudonym, it will then send the action to the associated
SureRepute-Server of that domain. The server will return back
the score of the user. If a connection cannot be made to any
entity of SureRepute, SureRepute-Client returns a default score
of 0.5, which represents a neutral score.

There is one SureRepute-Server for each application do-
main. The server is responsible for maintaining a reputation
score for the pseudonyms that are interacting in their domain.
This is done based on reports received from SureRepute-
Clients that are used by each application domain. Further-
more, if the same user is interacting with multiple application
domains, we maintain a shared reputation, that accounts the
behavior of the user in all domains.

To avoid inconsistencies, we ensure that only one server is
maintaining updates on the reputation of a user, which is called
the leader of that pseudonym. The other servers that also
receive requests for that pseudonym are considered as its fol-
lowers. When a new pseudonym is received by a SureRepute-
Server, it will need to first handle if the pseudonym is already
known by any other servers. To do that, the server broadcasts
the pseudonym to all other servers. When a client requests
the score of a pseudonym that is already known to either the
leader or the follower of that pseudonym, the server just needs
to return the current stored value for that pseudonym.

The identity provider is a highly trusted entity that is respon-
sible for maintaining the translations between the user identity
and the respective pseudonym. It initially interacts with all
SureRepute-Servers in order to get their public keys. When
a SureRepute-Client requests an encrypted pseudonym for a
new user, the identity provider generates a new pseudonym for
them and stores this relation in the database, if the pseudonym
is already known then it just gets it from the database, in both
cases the pseudonym will then be encrypted using the public
key of the SureRepute-Server associated with that application
domain and returned back to the SureRepute-Client.

The CA (Certificate Authority) is responsible for validating
the identity of all other entities of SureRepute and provide
them a certificate that is necessary to establish TLS connec-
tions with all other entities. For that, an entity must provide
a certificate signing request as well as the type of entity it is,

4



which is then validated. If valid, it creates a certificate that
explicitly requires that the identities use specific dns names of
our solution for communication.

V. USE CASE: CROSS

In order to attest how SureRepute can be easily added to
different application domains of the SureThing project, as well
as to be able to evaluate the solution in terms of overhead and
if it helps make better decisions, we decided to use CROSS
[5].

The CROSS API Server component was reimplemented
from Go to the Java programming language.

A new location proof strategy was added by Grade et al. [18]
to use other travellers at the same location as witnesses. Now,
when a traveler submits a visit, the confidence is calculated
based on:

• displacementConfidenceMultiplier: Calculates a confi-
dence level of the time it took to go from the previous
visit to this visit based on the distance between them.

• wiFiAPsConfidence: Percentage of networks found by the
client for this visit, compared to the total number of
access point registered in the server for that location.

• peerEndorsementsConfidence: A visit can now provide
endorsements to its location (witnesses), which are then
validated. The weight of every valid endorsement is
calculated as:

endorsementWeight(p, wi) =
Rwi

Npwi + 1
(4)

where p is the prover, wi is the specific witness, Rwi

is the reputation of the witness, which is in range [0, 1],
which can be provided by SureRepute, and Npwi is the
number of visits in different trips that where completed
in the past by the prover, which the witness w has already
testified to. The confidence is then calculated using:

min

(∑n
i=0 endorsementWeight(p, wi)

endorsementWeightTarget
, 1

)
(5)

where the endorsementWeightTarget is the weights sum
value of all witnesses weight that it is intended to be
achieved so that the strategy confidence is 100%, which
is further defined in Grade et al. [18] work.

Based on these values, the confidence assigned to each visit
is calculated as:

min(displacementConfidenceMultiplier×
(wiFiAPsConfidence+

peerEndorsementsConfidence), 1)

(6)

making the confidence of a visit to be the sum of the
confidence gathered by the strategies the user used (capture of
Wi-Fi access points and/or witness endorsements), multiplied
by the confidence multiplier. The minimum is used because
a traveller can use more than one strategy, and each strategy
can reach 100% of confidence.

The visit confidence is then compared with the confidence
threshold which is a predefined percentage that need to be met

by a specific visit. If confidence ≥ confidenceThreshold,
then the visit is accepted otherwise it is rejected. If all visits
of a route are accepted then the trip is considered completed
and a reward can be given by the CROSS application.

To use SureRepute, CROSS-Server now has to submit
reports that allows to create scores that reflects users behavior
and that can be used by CROSS-Server when verifying if a
visit is accepted or not. The scores of both the witnesses and
the traveller are requested to SureRepute synchronously using
the SureRepute-Client, when a visit is submitted, as we are
dependent on their values, on the other hand report submission
is done asynchronously.

Let us now analyse how the scores are used and when
reports are submitted:

1) Score of Witnesses: The scores of the witnesses can be
really helpful for calculating the endorsement weight that each
witness provides, as detailed in Equation 4. This endorsement
weight is then used to calculate the peerEndorsementsCon-
fidence, which is done using the Equation 5. Using the
reputation of SureRepute can be really helpful as the weight
that each endorsement has will be based on the past behavior
of the witness, which is represented by the reputation value.

2) Score of Traveller: After calculating the visit confidence,
we need to compare it to the confidence threshold. The
confidence threshold is the confidence level that needs to be
achieved by the traveller on that location, which as a default
value that is assigned when the location is created. But the
score can increase the level of confidence that needs to be
achieved based on the traveller score, making users that have a
reputation ≤ 0.5, to need to achieve a higher confidence level,
as they have have not proven themselves as good users yet. If
proverReputation ≥ 0.5, then the prover has a well-behaved
track record and the confidence threshold is not adjusted;
otherwise, we use a linear function to calculate the confidence
threshold:

1− confidenceThreshold

0.5
∗ proverReputation (7)

.
3) Report Submission: As explained in section III-F, there

are four types of reports we can submit, and here we adapted
the conditions in which each report is submitted to this specific
application: Critically Malicious: submitted for the traveler
when the trip is not coherent; Intentionally Malicious: submit-
ted for the traveller whenever we are certain that the traveller
acted malicious; Accidentally Malicious: submitted for the
traveller when the confidence does not reach the confidence
threshold; Well Behaved: submitted whenever the confidence
threshold is reached. The reports are sent for the traveller and
all for all witnesses that made good endorsements.

VI. EVALUATION

We want to show that the reputation system is capable
of creating scores that reflects user’ behavior while also
maintaining resistance against Traitor attacks as well as the
Sybil/Whitewashing attacks. Although the score must reflect
on the behavior of the reports submitted, there are still some
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parameters that need to be further studied to understand what
their impact is on the score given. These parameters are: the
initial score details, i.e., the initial values for s and r, which
represent the cumulative amount of bad and good behavior
respectively, and that we are representing as: Details(s, r);
the forgetting weights, i.e., λs, λr, which are represented as
Forgetting(λs, λr).

A. Score Details

The initial score details can be used to choose what score
to give to a newcomer when no reports were submitted yet,
and it can also give the initial setback before starting to trust
the behavior submitted for the user. To demonstrate this, we
provide some tests where we submitted 5 reports to the same
user, and we also change the number of intentionally malicious
behavior reports and good behavior reports submitted. For
these tests we used different initial score details: Details(1, 0),
Details(5, 0), Details(10, 0), Details(100, 0), and , Details(10,
5).

The results are presented in Figure 2. You can see, with
Details(1, 0) or Details(5, 0), when the user reports 5 reports
of only good behavior it already gathers a positive rating,
however looking at the Details(10, 0) or Details(100, 0), we
can see that it still has a score below 0.5. This is because
of the initial number of malicious behavior reports we give
to a newcomers which serves as the initial setback before
starting to trust the user real interaction with the system. After
surpassing the initial setback, it is possible to verify that the
user score reflects the behavior of the user, i.e., if more than
50% of reports submitted are of malicious behavior, then the
score of the user is bellow 0.5.
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Fig. 2. 5 reports submitted using different initial score details Details(s, r)
and changing the number of intentionally malicious reports submitted.

Looking into Details(10,0) and Details(10,5), the major
difference is that we can modify the default score given to
a newcomer. For example for Details(10,0) we have score =
(0 + 1)/(10 + 0 + 2) = 0.09 and with Details(10,5) we have
score = 0.35, which is important when we want to give an
initial setback for the user but we still want them to have a
default value far from 0.

This initial setback and the default score given to newcom-
ers is really important to defend against Sybil/Whitewashing

attacks, as it allows to remove the motivation for a user to
get new identities by giving a low initial score to the new
identity and it provides a slow build of reputation. The specific
score details to use depends on the system and how much we
want to prevent these attacks, in a scenario where the user
needs to be highly trusted, we need to use a high value for
s in the initial score details, which can be chosen based on
the average amount of report submissions that are made for
the user whenever it uses the system, but of course this is a
trade-off between security and usability as by increasing this
defense, a newcomer is more penalized by not being trusted
for a long time, which can demotivate all new users. On the
other hand if we want to prioritize usability we can use a lower
value of s, which will make the system more susceptible to
these attacks but make it easier for newcomer to be trusted.

B. Forgetting Weights

The forgetting weights allows to make recent behavior
matter more than old behavior and can also be used to make
malicious behavior to be forgotten slower than good behavior.

As mentioned before, the initial score details given to a user
depend on the system that is being used, so to attest how the
score reflects the user behavior, lets set a specific scenario:
“Considering a system for tourism trips, where for each trip a
user does, an average 3 reports are made and there is a limit
of 3 trips per day. The intention is that a new user has a slow
build of reputation and the system is capable of defending
against reputation attacks, but the initial score cannot be too
low, as it would make it impossible for trips to be accepted to
newcomers.”.

As on average at most 9 reports are submitted a day, using
score details as Details(10, 0) or Details(10, 5) seems like
a reasonable initial setback, as it needs at least a day of
interaction before starting to trust the reports that are being
submitted. As the system needs a default value not too low
choosing Details(10,5) for the next tests based on this scenario
seems the most appropriate, as it will provide an initial score
of 0.35 instead of 0.09.

After setting the initial scores details as Details(10,5),
we need to choose the forgetting weights for s and r. By
introducing forgetting weights we make the order of when
malicious behavior is submitted matter, for this reason, we
defined tests where a lot of reports were already submitted,
i.e., 100 reports are submitted, and did a similar test as before,
but now besides changing the number of malicious reports
that are submitted we also change the order that they are
submitted, which can be at the start or at the end. We did
these tests using different forgetting weights: Forgetting(1,1),
Forgetting(0.98, 0.95), Forgetting(0.98, 0.92), Forgetting(0.98,
0.90), Forgetting(0.95, 0.92). The Forgetting(1,1) serves as the
control test, because when the forgotten weights are 1 it means
that no report is ever forgotten, and so submitting malicious
behavior at beginning or at the end is the same.

The results are present in Figure 3 and by looking at
the graph we can see that whenever λs is bellow 0.98, the
malicious behavior starts to be forgotten too fast, as it produces
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a score with a value higher than 0.5 even if 80% of the
behavior is malicious. On the other hand using λr bellow
0.92 is also a bad idea as introduces a drastic difference
of when malicious reports are submitted at the end vs at
the start, looking at the graph, using Forgetting(0.98, 0.90)
as the forgetting weights, the submission of 10 malicious
reports already makes the score of the user to be 0.28, in
comparison with 0,74 when submitted at the start, decreasing
these value would increase the difference between them. Using
Forgetting(0.98, 0.95) still maintains the score above 0.5 with
10 (1 day) malicious reports submitted at the end, which is not
desirable as we want malicious behavior to drastically impact
the score. The forgetting weights that don’t forget malicious
behavior too quickly but still ensure the desirable penalization
on the score is Forgetting(0.98, 0.92), and so these are the
values that we would choose for this scenario.

Fig. 3. 100 Reports submitted with Details(10,5), using different forgetting
weights Forgetting(λs, λr) and changing the number of intentionally mali-
cious reports submitted and its order, which can be at the start or at the end.

C. Shared Reputation

To verify that the system maintains a shared reputation
whenever a user is present in multiple application domains,
we created a scenario where a client submits 80 reports
sequentially for the same user, 40 of intentionally malicious
behavior and 40 of good behavior, first all to a single server
and then dividing the report submission between two servers
and then for four servers. We also did another scenario were
we submit 40 reports using threads of always good behavior,
with the same number of servers. The results of both scenarios
showed that all servers contain the same score at the end,
which proves that servers are able to create a shared reputation.

D. CROSS Visit Submission

To evaluate the overhead introduced by the calls to SureRe-
pute from an application domain or if it helps making better
decisions, we did several tests using CROSS integrated with
SureRepute. For these tests we defined two environments:

• Local environment: CROSS-client, CROSS-Server,
SureRepute-Server and Identity-Provider are running in
the same computer.

• Deployed environment: CROSS-client is running on a
local computer with the same specification as before and
CROSS-Server, SureRepute-Server and Identity-Provider

are deployed in the cloud in the same cluster with logical
isolation.

Normally, CROSS-Client is the application that captures
endorsements and/or Wi-Fi access points and submit visits
to CROSS-Server during a trip. However, in this case, it is
a testing client that makes the requests needed for the tests,
in an easy and replayable way.

To attest the overhead introduced when multiple travellers
are submitting visits, we setup a scenario where we increase
the number of simultaneous submissions to verify the overhead
introduced, where each submission is using 15 witnesses. The
results are present in figure 4. We can see that when submitting
multiple visits at the same time in any of the environments
with 15 witnesses, SureRepute introduces a higher overhead
than with a single visit, which is normal and can be explained
by the fact that multiple threads of CROSS-Server are making
requests to SureRepute. But, at most, the overhead introduced
by SureRepute is of 250ms, in any of the environments. This
value is low when compared with the overall times that are
being done by CROSS without SureRepute. The high delay
introduced when we change from the local environment to the
cloud environment is unrelated with SureRepute, as the delay
is much higher than the overhead introduced by SureRepute.
If the delay is considered too high for a given user when
submitting a trip, we can upgrade the cloud environment by
changing the nodes type to process more rapidly the requests
or make visit submission on the client app of the users to
submit the visits asynchronously.

Fig. 4. CROSS Visit validation time with and without SureRepute in a
local and deployed environment, varying the number of simultaneous visit
submissions

To attest the benefits that SureRepute introduces to CROSS,
we developed some tests, where we verify when a visit is
accepted or not based only on the witness strategy, as it is
where scores are used.

Consider a scenario where a visit has a default confidence
threshold of 75%, and travelers submit visits with at most
15 witnesses. In these tests we change the traveler score to
change the confidence threshold. When the travelers score is
0, it needs 100% (100 − 100−75

0.5 ∗ 0 = 0) confidence, with
0.35, it needs 82.5% confidence and finally 0.5, where it needs
75% confidence. We also vary the Witness score from 0, 0.25,
0.35, 0.5, 0.75, 1. The number of witnesses goes from [1,
15]. We consider that using score of 0.5 for both the prover
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TABLE I
CROSS ACCEPTANCE RATE OF VISITS BASED ON: PROVER SCORE,

NUMBER OF WITNESSES AND WITNESS SCORE.

and witness is what simulates a scenario where SureRepute is
not used. The results are shown in Table I, and as you can
see, maintaining users behavior, makes the need for visits to
be submitted by travellers with more or less endorsements in
order to be accepted. The number of endorsements needed
depend on the score of the witnesses and the traveller, when
we have travellers that properly behave it removes the need
for the users to have a lot of witnesses. On the other hand
having a traveller and witnesses that misbehave makes the
need for more witnesses. If SureRepute was not used, then
all witnesses and prover would have a score of 0.5 and the
user would always need at least 4 endorsements, this would
benefit malicious users as they could take advantage of the
system more easily.

VII. CONCLUSION

In this document, we studied how to build a reputation
system as well as how the reputation score of its participants
can be calculated. We looked into what are the attacks and de-
fenses as well as what are the most used privacy-preservation
techniques on reputation systems. We also gathered informa-
tion about location certification systems that already employ
reputation and presented the SureThing application domains,
where we intend to insert a reputation system.

Then, we proposed SureRepute, a reputation system that can
be integrated into SureThing, which allows entities inside each
application domain to submit reports of the users behavior
and also to get their reputation. SureRepute provides privacy
protection to its users, by using pseudonyms to segregate what
information each entity has access to. The score calculation
technique used is based on the binomial Bayesian model,
where we made possible that different types of behavior can
be submitted. We also added the use of forgetting weights and
the change of the initial values of good and bad behavior, in
order to ensure protections against reputation attacks.

We evaluated that the system is capable of meeting its
requirements and integrated SureRepute into a real use case:
CROSS. The experiments showed that the integration does not
introduce a significant overhead on the application domain,

and it helps to make better decisions regarding witnesses,
which provides added security to crowdsourced applications.
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