
Denial-of-service test-bed for distributed
location proof system

Pedro Teixeira[0000−0002−6632−1275], Samih Eisa[0000−0003−0972−4171], and
Miguel L. Pardal[0000−0003−2872−7300]

INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Portugal
{pedro.a.f.teixeira,miguel.pardal}@tecnico.ulisboa.pt

samih.eisa@inesc-id.pt

Abstract. Location proof systems use many smart devices scattered
across different geographic areas to provide witnessed proof of location to
enable secure location-based services. However, Denial-of-Service (DoS)
attacks can affect the system by slowing or shutting down the smart
devices, making them inaccessible to its intended users. These attacks
can happen even if the network devices are authenticated and are using
encrypted communications. This is because DoS is a distinct class of
attack that targets the availability of the system and requires different
security solutions that are hard to deploy and test.
In this work we provide a Mininet-based test-bed for an example Internet
of Things system. The test-bed can emulate all the network nodes across
a city, including sensors, servers and routers, and can generate both regu-
lar and DoS traffic. Using it, we can experiment with DoS detection and
mitigation techniques before the application is deployed. We have run
experiments with simple threshold analysis and also with sophisticated
techniques based on Deep Learning. The end-goal is to deliver systems
that are protected and stable even during DoS attacks.

Keywords: Security · Location Proof · Denial-of-Service · Distributed
Denial-of-Service · Software-Defined Networking · Deep Learning.

1 Introduction

Denial of Service (DoS) attacks can make the network resources unavailable for
the intended users, thus the service is interrupted temporarily or indefinitely [2].
Distributed Denial of Service (DDoS) is a coordinated DoS attack, generated by
using many compromised hosts [9]. Attacks like DDoS have been performed [4]
with ease, i.e. it is easy for the attacker to take over a large number of these
devices in order to execute a DDoS attack.

One possible way to improve network security is to use a Software Defined
Networking [6] (SDN) architecture. It has potential to enhance network security
with the provision of a highly reactive security monitoring, analysis and response
system.

In this article we propose a DoS test-bed based on the Mininet [5] network
virtualizer. We also present two different solutions for detecting these attacks:



2 Teixeira et al.

one based on Thresholds and the other on Deep Learning, explaining the differ-
ences between these two approaches, the different cases that they might apply,
providing experiments and results from both solutions. In terms of security prop-
erties [1], the objective of this work is to assist in the development of solutions
to preserve availability ; the focus is not on integrity and confidentiality.

For the test-bed evaluation, we chose CROSS [8] as an example Internet
of Things application with a support network. CROSS is a distributed proof
location system created with the intention of promoting smart tourism in the city
of Lisbon, Portugal. In CROSS, users are rewarded if they complete itineraries
across the city. If the system is made unavailable by a DoS attacks, tourists will
not be able to collect their rewards and will be very unsatisfied.

Location proof systems, such as CROSS, are usually deployed with many
smart devices to help clients prove their position and prevent location spoofing
attacks. These devices are programmed so that they can protect the client’s
privacy, using methods like anonymization or cryptography. However, they lack
security protections against DoS attacks. This work will address this gap with
the use of SDN for testing DoS mitigations.

Hence, the key contributions of this article are as follows:

– Present a Solution for detecting and mitigating DoS/DDoS attacks that joins
previous work, making each solution compensate where the other lacks.

– Describe a test-bed for DoS/DDoS attacks based on CROSS.

The remainder of the paper is structured as follows:

– Section 2 start by presenting our network management, followed by work
on DoS/DDoS detection, ending with previously proposed ways to mitigate
these attacks.

– Section 3 presents our proposed solution for dealing against DoS/DDoS at-
tacks.

– Section 4 explains our test-bed in detail.

2 Background & Related work

This section describes previous work with DoS attacks providing detection and
mitigation methods.

2.1 Network infrastructure management

Software-defined anything (SDx) is a technology that makes software more “in
command” of multi-piece hardware systems allowing for software control of a
greater range of devices. SDx includes software-defined networking (SDN), which
is the most recognized technology, and its core feature is the separation of the
control plane and data plane in the network. SDN realizes flexible control of
network traffic and provides a good platform for the innovation of core networks
and applications. The devices in SDN are programmable, and thus the networks



Denial-of-service test-bed for distributed location proof system 3

themselves are more dynamic, manageable, cost-effective, and adaptable. Making
the SDN technology more capable of addressing problems like DoS in location
proof systems.

The primary components of SDN are controllers and switches. The controllers
in SDN oversee the management of the entire network, and the switches in SDN
are responsible for network traffic forwarding based on the instructions deployed
through the SDN controllers.

With all this in mind, we can have an idea of how we can simulate the CROSS
infrastructure using SDN and how we can configure it, and also the procedures
to follow.

2.2 Denial-of-Service detection

To perform DoS attack detection, Yin et al. [12] have proposed an algorithm that
calculates the cosine similarity of the vectors of packets. It checks the incoming
packets (packet in) in each port of the boundary switches in the SD-IoT [12]
and then determines whether a DoS attack has occurred based on the value of
the cosine similarity. Although the results of this method were good, compared to
previous methods presented by Yin et al., there is a weak point in this solution:
the assumption made by the authors that the packets are similar which we cannot
assume in a real-world scenario. Despite this weakness the threshold approach
can however be used for certain DoS attacks as we will see in the next sections.

Software-Defined Anything and Machine Learning are two approaches that
can be combined to deal with DoS attacks, as Ravi et al. [10] have demonstrated
by crafting a novel Learning-driven detection mitigation mechanism (LEDEM)
mechanism. LEDEM leverages the cloud-SDN architecture as it is open, flexible,
programmable, and dynamic. SDN splits the control and data plane in the net-
work. To tackle these issues, there is a necessity to provide intelligence to detect
DoS. Keeping this in mind the Ravi et al. have used a semi-supervised [10] ML
model, the semi-supervised deep extreme learning machine (SDELM) model,
which is a mixture of unsupervised training, where unlabeled data is used, and
supervised training, where labeled data is used, to detect DoS.

2.3 Denial-of-Service mitigation

The strategy to mitigate these attacks, in a SDN environment, is to set drop
rules for the malicious packets as done in the work of Yin et al. [12] where,
after an attack has been detected, it is set on the flow table to drop all the
packets originated by the malicious devices. But we need to consider that if an
attacker has a large botnet, composed for example of many IoT devices, setting
individual rules for the malicious IoT will saturate the limited flow table space
in switch and lead to overloading issues in the control plane of the SDN. So,
Ravi et al. [10] have proposed a novel mitigation strategy that mitigates DDoS
and prevent saturation issues. This strategy is the one that we followed in our
own proposal, presented in the next section.



4 Teixeira et al.

3 AntiDDoSTe

Our solution is called AntiDDoSte1and it uses 2 strategies for DoS/DDoS detec-
tion and 1 strategy for mitigation.

3.1 DoS detection

The first strategy is the Threshold detection approach in which we set a threshold
that limits the number of certain packets that a client can send. The procedure
applied to TCP-SYN flood attacks in shown in Algorithm 1. First, we set a pre-
defined threshold N which can be 20, for example. Then, when a TCP packet is
received in the controller, it is detected if the packet contains a SYN or a ACK
flag. If the packet has a SYN flag the counter for that client is increased, if the
packet has a ACK flag, the counter for that client is decreased. In the event that
the counter reaches the maximum threshold the mitigation strategy is applied.

Algorithm 1: Threshold mitigation approach

Result: Increase/Decrease counter from host or mitigate attack
Threshold← N ;
tracker ← {};
if PacketIn.type != TCP then

return
end
if PacketIn.flags != SYN or ACK then

return
end
if PacketIn.flags == SYN then

if PacketIn.scr not in tracker then
tracker[PacketIn.scr] = 1 #src means packet source IP

else
tracker[PacketIn.scr] += 1
if tracker[PacketIn.scr] == Threshold then

Apply mitigation strategy
end

end

end
if PacketIn.flags == ACK then

if PacketIn.scr not in tracker then
tracker[PacketIn.scr] -= 1

end

end

The second detection approach is based on the Deep learning [7] (DL) tech-
nology. Deep learning is a branch of Machine learning where its most impor-
tant advantage is the replacement of the handcrafted features with efficient al-

1 Neologism resulting from the combination of “antidote” with DDoS.



Denial-of-service test-bed for distributed location proof system 5

gorithms for unsupervised or semi-supervised feature learning and hierarchical
feature extraction. This technology has been previously applied on traffic clas-
sification [11]. Therefore, we deploy a DL model alongside the controller. The
controller is responsible for the extraction of packet features, which can be seen
in table 1, alongside some examples and their types, and send these features to
the controller. Once the model as received the features it analyse them and sends
the decision to the controller. Finally, the controller upon receiving the decision
applies the mitigation strategy if needed.

Field Field Example Field Type

Frame Number 1 Numerical

frame.len 805 Numerical

ip.protocol tcp Text

ip.ttl 127 Numerical

tcp.srcport 2090 Numerical

tcp.dstport 443 Numerical

tcp.syn 1 Numerical

tcp.ack 0 Numerical

tcp.rst 0 Numerical

Time 0 Numerical
Table 1. Network traffic fields.

Our novel proposes a way to work against possible weaknesses present in
previous work. For example in the case of the threshold detection, it might not
be possible to detect every attack since we need to know a weakness present in
that attack, which might not exist, making the DL solution more appropriate
for those cases. On the other hand, if we only use the DL solution, it can take a
considerable time to detect a simpler attack, e.g. TCP-SYN flood, in comparison
with the threshold solution, when deployed in a less powerful device. Therefore,
what we are purposing is a solution that joins different technologies, in this work
DL and thresholds, in order to be able to detect attacks faster than just using a
single solution.

3.2 DoS mitigation

Once a device has been stated as malicious by the detection approaches the con-
troller is responsible for applying the mitigation strategy. The controller starts
by creating an entry for a VLAN2, if the VLAN does not exist, with no flow
rules so that the packets get drooped, then, the malicious device is put in that
VLAN. There is only one VLAN responsible for every malicious device per sub
network, and so needing only one entry in the switch flow table for dropping all
the packets from the malicious devices [10].

2 A VLAN is a Virtual Local Area Network. It is a broadcast domain that is partitioned
and isolated at the data link layer.



6 Teixeira et al.

4 Test-bed

In this section we explain our test-bed, starting by first describing the tool we
use to emulate CROSS then we mention the hardware components and software
components we emulate in our test-bed, ending with a brief overview of the
network topology.

4.1 Network Emulator

Mininet [5] is an OpenFlow-based SDN emulator giving researchers an efficient
way to test their SDN frameworks and measure their performance and reliability.
The Mininet is an open source emulator written in the Python programming
language. It is built over the Ubuntu Linux distribution. The elements of Mininet
are organized into three main components: the host, which sends and receives
the packets, the switch, which stores all the required rules to forward the packets
to their destinations, and a central controller which handles the functionality of
control and management operations in the network. Mininet supports different
types of virtualized hosts, switches and controllers.

4.2 Hardware

This test-bed consists mainly of a server, 10 devices that can be Kiosks, Smart
Space Managers (SSM) or Wi-Fi Access Point (AP), 6 OpenFlow-enabled switches
and 6 SDN controllers. Quantities and components used in this test-bed are
listed in Table 2. The current set-up only use one machine to emulate every-
thing which is enough to demonstrate our solution management over a smaller
scale of CROSS network. However, we also expose the equipment that we will
use in the tourism devices for our ultimate goal that is deploying AntiDDoSte
alongside CROSS.

Device QTY Specification

Server 1 Intel Core i7-8750H CPU at 2.20GHz

Kiosk 3 Intel Core i7-8750H CPU at 2.20GHz or Raspberry pi

AP 4 Intel Core i7-8750H CPU at 2.20GHz or ESP32

SM 3 Intel Core i7-8750H CPU at 2.20GHz or Arduino

switch 6 Intel Core i7-8750H CPU at 2.20GHz

controller 1 Intel Core i7-8750H CPU at 2.20GHz
Table 2. Hardware Specifications.

4.3 Software

On the top of the hardware infrastructure we have a Pox controller [3] which is
Python-based open-source OpenFlow/SDN. POX is used for faster development



Denial-of-service test-bed for distributed location proof system 7

and prototyping of new network applications. The controller comes pre-installed
with the Mininet virtual machine. By using them you can turn dumb openflow
devices into hub, switch, load balancer, firewall devices. The POX controller al-
lows easy way to run OpenFlow/SDN experiments. POX can be passed different
parameters according to real or experimental topologies, thus allowing experi-
ments to be run on real hardware, testbeds or in Mininet emulator. To generate
the traffic from each host we use a Python library, called Scapy. It is a powerful
interactive packet manipulation program that can forge or decode packets of a
wide number of protocols, send them on the wire, capture them, match requests
and replies.

4.4 Network topology

As we can see from figure 1, where figure 2 is its caption, there are 6 sub-
networks, across the city of Lisbon, in the emulated framework, 5 of them are
tourism points with 2 devices, per sub-network, for proof location, and the last
one is for the CROSS server. Each sub-network has a switch which is connected
to every device in the sub-network, working as a router for that sub-network, and
a Pox controller which is responsible for setting rules in the switch for forwarding
or dropping packets. Note that in Figure 1 it is internet with lower-case “i” since
CROSS is a private network.

4.5 Attack scenarios

Some possible attack scenario in our test-bed are:

– An attacker uses a tourism based device, i.e. the Kiosk, Smart Space Man-
nager and Wi-Fi Access Point, present in one sub network to perform a DoS
aiming the application server.

– Perform a DoS from one tourism based device to another in the same sub
network, for example in figure 1 in Jerónimos one Kiosk could attack a Wi-Fi
Access Point, or in different sub networks, for example a Kiosk in Sé could
attack a Kiosk in Jerónimos.

– All the tourism based device in a sub network can be used to perform a
DDoS attack to the application server or a tourism based device present in
other sub network.

– And it is possible to use all the tourism based devices present in the test bed
to perform a DDoS attack to the application server.

5 Conclusion

In this work we have proposed a test-bed for DoS attack detection and mitiga-
tion. As an example, we used CROSS, a location proof systems, supporting a
smart tourism application. Our test-bed uses SDN so we can do a deep inspec-
tion of the packets from each device in the network, as well as, being able to set



8 Teixeira et al.

Fig. 1. Emulated CROSS topology.

Fig. 2. Emulated CROSS topology caption.



Denial-of-service test-bed for distributed location proof system 9

flow rules. We also proposed two different solutions for detecting DoS attacks one
based on Thresholds and another based on Deep Leaning, conducting different
experiments for each approach.

For future work we aim to use our solution to demonstrate the test-bed
efficiency for dealing with DoS/DDoS attacks. And, use real devices for our
test-bed.

Acknowledgements

This work was supported by national funds through Fundaç ao para a Ciência e
a Tecnologia (FCT) with reference UIDB/50021/2020 (INESC-ID) and through
project with reference PTDC/CCI-COM/31440/2017 (SureThing).

References

1. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and taxon-
omy of dependable and secure computing. IEEE Transactions on Dependable and
Secure Computing 1(1), 11–33 (Jan 2004). https://doi.org/10.1109/TDSC.2004.2

2. Chen, W., Ding, D., Dong, H., Wei, G.: Distributed resilient filtering for power
systems subject to denial-of-service attacks. IEEE Transactions on Systems, Man,
and Cybernetics: Systems 49(8), 1688–1697 (2019)

3. Kaur, S., Singh, J., Ghumman, N.S.: Network programmability using pox con-
troller. In: ICCCS International Conference on Communication, Computing &
Systems, IEEE. vol. 138, p. 70. sn (2014)

4. Kolias, C., Kambourakis, G., Stavrou, A., Voas, J.: Ddos in the iot: Mirai and
other botnets. Computer 50(7), 80–84 (2017)

5. Lantz, B., Heller, B., McKeown, N.: A network in a laptop: rapid prototyping for
software-defined networks. In: Proceedings of the 9th ACM SIGCOMM Workshop
on Hot Topics in Networks. pp. 1–6 (2010)

6. Larry L. Peterson, C.C., Brian O’Connor, T.V., Davie, B.: Software-Defined Net-
works: A Systems Approach (2020)

7. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444
(2015)

8. Maia, G.A., Claro, R.L., Pardal, M.L.: Cross city: Wi-fi location proofs for smart
tourism. In: International Conference on Ad-Hoc Networks and Wireless. pp. 241–
253. Springer (2020)

9. Matta, V., Di Mauro, M., Longo, M.: DDoS attacks with randomized traffic in-
novation: Botnet identification challenges and strategies. IEEE Transactions on
Information Forensics and Security 12(8), 1844–1859 (2017)

10. Ravi, N., Shalinie, S.M.: Learning-driven detection and mitigation of DDoS attack
in iot via sdn-cloud architecture. IEEE Internet of Things Journal 7(4), 3559–3570
(2020)

11. Wang, Z.: The applications of deep learning on traffic identification. BlackHat USA
24(11), 1–10 (2015)

12. Yin, D., Zhang, L., Yang, K.: A DDoS attack detection and mitigation with
software-defined internet of things framework. IEEE Access 6, 24694–24705 (2018)

https://doi.org/10.1109/TDSC.2004.2

	Denial-of-service test-bed for distributed location proof system

