POSE: Protobuf Signing and Encryption for
Location Proof Systems on Constrained Devices

Miguel FI‘anCiSCO[OOOO_OOOS_1759_3167], Samih Eisa[OOOO—OOOB—0972—4171], and
Miguel L Pardal[0000700037287277300]

INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Portugal
{miguel.c.francisco,miguel.pardal}@tecnico.ulisboa.pt
samih.eisa@inesc-id.pt

Abstract. Existing location proof systems provide reliable and verifi-
able information about the location of user devices, usually smartphones.
The proofs require short-range communication with other devices, called
witnesses, that endorse and strengthen location claims. However, ex-
tending these proof systems to constrained devices in Internet of Things
(IoT) applications has been a source of security challenges. A specific
problem is the use of Bluetooth Low Energy (BLE). BLE is a widely
used, low-power variation of the classic Bluetooth. Although it has ma-
tured over the years, it still presents vulnerabilities that can compromise
the authenticity of the packets exchanged between the devices of wit-
nesses. In this paper, we present POSE, an end-to-end application layer
security protocol for BLE. POSE uses protocol buffers for message se-
rialization/deserialization and can provide message confidentiality and
authenticity. We implemented POSE and tested it with an application
that issues medical appointment attendance proofs.

Keywords: Location Proof System - Internet of Things - Constrained
Devices - Security - Encryption - Bluetooth Low Energy - Protocol Buffer.

1 Introduction

Object security has been successfully used in application-layer solutions in the
IoT world [9], without depending on the message-format encoding. JOSE [RFC
7515, 7516] and COSE [RFC 8152] make use of this concept to guarantee ob-
ject security using JSON and CBOR format-encoding messages, respectively.
However, IoT applications face significant resource constraints and may bene-
fit from additional efficiency improvements. One possible improvement over the
existing solutions is the use of Protocol Buffers [6] (usually shortened to just
Protobuf). These buffers are an efficient and lightweight way of encoding data,
while also providing language and platform-independent data abstractions. Al-
though this encoding mechanism has been around for many years, it has never
been properly explored for object security when used in BLE communications.
Such short-range communications are used in different Location Proof Systems,
where location proof techniques require BLE communications between provers
and witnesses to exchange location claims and endorsements.



2 Francisco et al.

Location Proof Systems [I2)[1] are essential enablers for secure and reliable
Location-Based Services (LBS) that protect information about the location of
users on smart devices. The functionalities of these systems can be leveraged
with the usage of IoT and constrained devices, innovating the way to seamlessly
produce and verify location proofs.

In this paper, we present POSE, a proposal to secure the exchange of mes-
sages between constrained devices that use BLE for communication. The solution
offers Protobuf-based object security in BLE messages exchanged between de-
vices. We demonstrate the use of POSE in an application supported by a location
proof system, with devices operating as provers and witnesses.

The remaining paper has the following contents: the POSE specification can
be seen in Section [3} in Section [l we show how to implement it POSE and a use
case specific proof-of-concept, just before the conclusion in Section

2 Related Work

Most of the location certification systems are inspired by the notion of Location
Proof given by Saroiu et al. [7]. The idea of having the users of the system
working as witnesses for other users and certifying their location claims is also
a method used by multiple systems. In APPLAUS [12] and CREPUSCOLO [I]
the communication between both roles is made in a direct way, meaning that
there is no intermediary in the communication, making it faster. Both systems
make efforts to minimize collusion attacks but cannot eliminate the attack in all
cases. This is true even in more recent systems, such as PASPORT [5]. Recently,
there has been an effort to provide better tools for using location proofs, such
as the SureThing framework [2] In all of these systems, it is essential to have
proximity communication with witnesses and, on top of that, to have secure
communication with them, including authentication and integrity protection.

Bluetooth has been one of the chosen protocols to realize such short-range
communications in the past years [I0/12], as well as BLE for constrained devices.
In BLE, if both connecting devices do not force the pairing protocol, the com-
munication is done in plain-text but even if they do, they are still vulnerable
to some design flaws like Man-In-The-Middle (MITM) attacks and downgrade
attacks of the communication to plain-text [I1]. Therefore, confidentiality is im-
portant to protect sensitive data in those message exchanges. Tjader [8] showed
how to guarantee message confidentiality in those exchanges by enhancing those
communications with COSE [RFC 8152]. CBOR Object Signing and Encryp-
tion (COSE) is an IETF standard on how to process signatures, encryption, and
Message Authentication Codes (MAC) computations for CBOR (Concise Binary
Object Representation) message-encoding format.

Protocol buffers (Protobuf) have already been introduced in the world of
heterogeneous constrained devices as a lightweight and interoperable alterna-
tive to standardized message encoding schemes like CBOR, JSON or BSON [4].
Jenkov [3] has shown in practice that Protobuf messages with five different fields
have a much higher read and write throughput than equivalent CBOR messages.



Title Suppressed Due to Excessive Length 3

3 POSE

The POSE (Protocol buffer Object Signing and Encryption) protocol is designed
to provide an end-to-end security layer over BLE communication on constrained
devices. The protocol is based on the COSE (CBOR Object Signing and Encryp-
tion) specification [RFC 8152] which is created to provide basic security services
for the CBOR (Concise Binary Object Representation) data format [RFC 8949).
The COSE specification describes in detail how to create and process message
signature, authentication codes and encryption using CBOR as the data encod-
ing format for small size messages on constrained and limited devices. Funda-
mentally, POSE follows the standard COSE specification. However, it takes full
advantage of Protobuf as its underlying data encoding format to abstract the
exchanged messages over BLE communications. Protobuf provides a convenient
way to structure data in a compact way and then use a Protoc, a protocol buffers
code generator, to easily write and read those structured data [4].

3.1 Message Format and Types

POSE specifies different message types depending on the security guarantee to
ensure and the number of recipients or senders. In the context of a single recipient
one-way BLE communications, POSE specifies three message types, each offering
different security guarantees, detailed in Section[3.1] All of them follow the same
grammar and present the same fields as all the remaining COSE objects.

Message Format POSE protocol supports the same primitive types as defined
in COSE specification, like Booleans, Integers, Byte strings, etc. Each field in
a POSE object message can be a primitive type or Protobuf-defined message,
depending on the type of the message, however, it always starts with the three
fields: protected header parameters, unprotected header parameters and the con-
tent of the message. Both protected and unprotected headers are ‘label’-‘value’
maps. Each label is a well defined Integer, while a value is a primitive type or
another POSE message. The protected bucket contains parameters about the
current layer and information about the used cryptographic algorithms. All this
information is protected since it is used in the cryptographic computation, where
is either signed, hashed or used as associated data in the encryption, as explained
in Section [I.I] The unprotected field is similar but not protected, meaning that
it may not be authentic when it reaches the recipient. Both fields are serialized
into a byte string. The content of the message field can be either plain-text,
cipher-text or another POSE message.

Message Types The different POSE message types can be seen in Table
These messages depend on the knowledge of who is the recipient and on an
implicit symmetric key/asymmetric key pair, previously established.



4 Francisco et al.

Table 1. POSE Message Types.

POSE Message Type Semantics
POSE_Sign1 Signed data object
POSE_Mac0 Mac data object

POSE_Encrypt0 Encrypted data object

message POSE_Signi{
bytes protected = 1;
HeaderMap unprotected = 2;
bytes payload = 3;
bytes signature = 4;

Listing 1: POSE_Signl Protocol Buffer definition.

Signed data object The POSE_Signl message type object ensures the non-
repudiation of the transmitted data, by one signer only. It makes use of the same
signature algorithms as used in the COSE standard, which are the Edwards-curve
Digital Signature Algorithm (EdDSA) and the Elliptic Curve Digital Signature
Algorithm (ECDSA). The protected bucket and payload are both signed, where
the latter can even include another POSE message type, allowing the creation
of sealed objects. The POSE_Signl protocol buffer definition can be seen in
Listing [1]

Mac data object The POSE_Mac0 message type object ensures integrity and
authenticity of both the payload and the protected bucket by generating a tag
with a Message Authentication Code (MAC). It makes use of the same algo-
rithms as COSE, which can either be a block cipher algorithm, like AES-MAC,
or a hash algorithm, like HMAC. The Protobuf definition of the POSE_Mac0
message type can be seen in Listing 2]

message POSE_Mac0{
bytes protected = 1;
HeaderMap unprotected = 2;
bytes payload = 3;
bytes tag = 4;

Listing 2: POSE_Mac0 Protocol Buffer definition.



Title Suppressed Due to Excessive Length 5

message POSE_EncryptO{
bytes protected = 1;
HeaderMap unprotected = 2;
bytes ciphertext = 3;

Listing 3: POSE_Encrypt0 Protocol Buffer definition.

Encrypted data object The POSE_Encrypt0 message type object is the one
that offers the most security guarantees and is the type in which we focused on
in our implementation (Section. This type ensures message confidentiality and
integrity and message freshness. The Protobuf definition of the POSE_Encrypt0
message type can be seen in Listing [3]

3.2 Message Confidentiality and Integrity

To ensure both the confidentiality and integrity of the transmitted data, the
POSE_Encrypt0 message must be used, instead of the POSE_Mac0 object which
only guarantees integrity. It uses the Authenticated Encryption with Associated
Data (AEAD) as the form of encryption and the AES-GCM as the mode of
operation for the encryption computation of the payload. AEAD ensures the au-
thenticity of the associated data used in encryption along with the integrity and
confidentiality of the cipher-text. The encryption makes use of a pre-shared 128-
bit symmetric key. We leave a possible handshake for a key agreement for future
work. This mode of operation requires an Initialization Vector (IV) to guarantee
the uniqueness of each encryption, which we randomize for each message and
use to guarantee the message freshness as well, as shown in Section [3.3]

3.3 Message Freshness

Although the AEAD with AES-GCM offers a lot of security guarantees, it does
not guarantee the freshness of the transmitted data. This problem is not ad-
dressed in the COSE standard. POSE, however, solves this problem by using
the IV of the AEAD encryption as a nonce field.

4 Implementation

This Section presents the implementation of the POSE protocol. In Section 4.1
we detail how to build the POSE_Encrypt0 message object according to format
and fields previously explained. In Section we show how POSE is used in an
example application.



6 Francisco et al.

message Enc_Structureq{
string context = 1;
bytes protected = 2;
HeaderMap unprotected = 3;
POSE_EncryptO body = 4;

Listing 4: Enc_Structure Protocol Buffer definition.

4.1 Security processing

The first step to produce a POSE_Encrypt0O message object is to create a consis-
tent byte stream for the associated data that will be used in the cryptographic
computation. For that purpose, a new object Enc_Structure should be created
according to the Protobuf definition shown in Listing[4] as defined by the POSE
protocol. The subsequent steps describe the encryption and decryption processes.

Encryption

1. Create the Enc_Structure message object and fill it with the appropriate
fields such as the context string and the protected attributes. The context
string is a well-defined string that identifies the type of the payload.

2. Serialize the created Enc_Structure object into byte stream using protocol
buffers encoding to create the associated data.

3. Call the encryption algorithm with the previously loaded encryption key K,
the plain-text of the POSE_Encrypt0 message object, and the associated data
(AD). Then include the result in the cipher-text field of the POSE_Encrypt0.

Decryption

1. Create an object of Enc_Structure message similar to the one received but
without the cipher-text.

2. Serialize the created Enc_Structure object into byte stream using protocol
buffers encoding to create the associated data.

3. Call the decryption algorithm with the previously loaded decryption key K,
the cipher-text of the POSE_Encrypt0 object from the received Enc_Structure
message, and the associated data (AD).

4.2 Example application

The example application allows a patient to prove his presence at a medical clinic.
This was achieved through one-way BLE communication that allows the patient,



Title Suppressed Due to Excessive Length 7

context: "EncryptO"
protected: map: {5:
E09057384768B9557658E309} //IV/Nonce

unprotected : {}
body { //POSE_EncryptO

protected: map: {1: 10}

unprotected {}

ciphertext: 1FDF435D9C2C80B3C457FB18ES85B5CO3DA33A9BC. . .

Listing 5: Enc_Structure implementation.

using a running app on his smartwatch, to exchange messages with a Kiosk device
at the medical clinic to prove his presence. The patient acts as a location prover
and the Kiosk as a witness to endorse the patient’s presence at the clinic. The
security needs to be guaranteed by successfully applying the POSE protocol to
provide the desire BLE application security level. The exchanged BLE packet
between the smartwatch and the Kiosk device uses our implementation of the
Enc_Structure, which can be seen in Listing

The cipher-text is an encrypted location claim. The patient generates a lo-
cation claim with his app, containing the user, location, and time information.
Then the patient signs the claim to guarantee the non-repudiation of his claim.
This discards the necessity to use the POSE_Signl message object, previously
explained. The smartwatch advertises BLE packet with the Enc_Structure ob-
ject to the Kiosk device. Without POSE, the signed location claim would be in
plain-text and, therefore, an attacker could read the user sensitive information.
However, with POSE implemented, we guarantee the authenticity and confiden-
tiality of the patient’s location claim. The Kiosk device on the other end follows
the decryption methodology, previously explained, and signs the location claim
creating a location endorsement to be submitted to a location service provider
as part of the location proof system. The implemented process of this medical
appointment use case can be seen in Figure [I]

5 Conclusion

In this paper we presented POSE, an application-layer security enhancement pro-
tocol for Bluetooth Low Energy (BLE) communications on constrained devices,
using Protobuf as data-encoding format. POSE was tested with an example ap-
plication supported by a location proof system that allows users to prove their
locations and presence with their smart devices. The results show the feasibility
and efficiency of POSE protocol on top of pairing-less BLE connections with



Francisco et al.

Signed
Location
Claim

[2?< BLE + POSE >

Smartwatch Kiosk

Fig. 1. Location proof technique used to test the POSE implementation.

small packet overhead and small increase in CPU usage. This same approach
and implementation shows great promise for many other IoT applications.

Acknowledgements

This work was supported by national funds through Fundagao para a Ciéncia e
a Tecnologia (FCT) with reference UIDB/50021/2020 (INESC-ID) and through
project with reference PTDC/CCI-COM/31440/2017 (SureThing).

References

1.

Canlar, E.S., Conti, M., Crispo, B., Di Pietro, R.: Crepuscolo: A collusion resistant
privacy preserving location verification system. In: 2013 International Conference
on Risks and Security of Internet and Systems (CRiSIS). pp. 1-9 (Oct 2013).
https://doi.org/10.1109/CRiSIS.2013.6766357

. Ferreira, J., Pardal, M.L.: Witness-based location proofs for mobile devices. In:

17th IEEE International Symposium on Network Computing and Applications
(NCA) (Nov 2018)

Jenkov, J.: Rion vs. json vs. protobuf vs. messagepack vs. cbor (Sep 2019), http:
/ /tutorials.jenkov.com /rion/rion-performance-benchmarks.html

Kaur, G., Fuad, M.M.: An evaluation of protocol buffer. In: Proceedings
of the IEEE SoutheastCon 2010 (SoutheastCon). pp. 459-462 (March 2010).
https://doi.org/10.1109/SECON.2010.5453828

Nosouhi, M.R., Sood, K., Yu, S., Grobler, M., Zhang, J.: Pasport: A se-
cure and private location proof generation and verification framework. IEEE
Transactions on Computational Social Systems 7(2), 293-307 (April 2020).
https://doi.org/10.1109/TCSS.2019.2960534

Popic, S., Pezer, D., Mrazovac, B., Teslic, N.: Performance evaluation of us-
ing protocol buffers in the internet of things communication. In: 2016 Interna-
tional Conference on Smart Systems and Technologies (SST). IEEE (oct 2016).
https://doi.org/10.1109/sst.2016.7765670


https://doi.org/10.1109/CRiSIS.2013.6766357
http://tutorials.jenkov.com/rion/rion-performance-benchmarks.html
http://tutorials.jenkov.com/rion/rion-performance-benchmarks.html
https://doi.org/10.1109/SECON.2010.5453828
https://doi.org/10.1109/TCSS.2019.2960534
https://doi.org/10.1109/sst.2016.7765670

10.

11.

12.

Title Suppressed Due to Excessive Length 9

Saroiu, S., Wolman, A.: Enabling new mobile applications with location proofs.
In: Proceedings of the 10th Workshop on Mobile Computing Systems and Ap-
plications. HotMobile '09, Association for Computing Machinery, New York, NY,
USA (2009), [https://doi.org/10.1145/1514411.1514414

Tjader, H.: End-to-end Security Enhancement of an IoT Platform Using Object
Security. Master’s thesis, Linképing University, Information Coding (2017)
Vuéinié¢, M., Tourancheau, B., Rousseau, F., Duda, A., Damon, L., Guizzetti, R.:
Oscar: Object security architecture for the internet of things. In: Proceeding of
IEEE International Symposium on a World of Wireless, Mobile and Multimedia
Networks 2014. pp. 1-10 (2014). https://doi.org/10.1109/ WoWMoM.2014.6918975
Wang, X., Pande, A., Zhu, J., Mohapatra, P.: STAMP: Enabling privacy-preserving
location proofs for mobile users. IEEE/ACM Transactions on Networking 24(6),
3276-3289 (dec 2016). https://doi.org/10.1109/tnet.2016.2515119

Zhang, Y., Weng, J., Dey, R., Jin, Y., Lin, Z., Fu, X.: On the (in)security of blue-
tooth low energy one-way secure connections only mode. ArXiv abs/1908.10497
(2019)

Zhu, Z., Cao, G.: Applaus: A privacy-preserving location proof updating system for
location-based services. In: Proceedings IEEE INFOCOM. pp. 1889-1897 (April
2011). https://doi.org/10.1109/INFCOM.2011.5934991


https://doi.org/10.1145/1514411.1514414
https://doi.org/10.1109/WoWMoM.2014.6918975
https://doi.org/10.1109/tnet.2016.2515119
https://doi.org/10.1109/INFCOM.2011.5934991

	POSE: Protobuf Signing and Encryption for Location Proof Systems on Constrained Devices

