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Abstract. Despite the best efforts of designers, a system cannot be said
to be truly secure and robust until it has experienced - and thwarted -
attacks from skilled and motivated attackers. With that in mind, we
performed an offensive security assessment of CROSS, a smart tourism
application that uses location proofs. The server is exposed on the pub-
lic Internet and offers a REST-based API. We performed a vulnerability
assessment and penetration testing on the server, using generic attack
tools, and from different vantage points in the network, always in the
attacker perspective. We present the tools and techniques used to attack
the REST API, a detailed presentation of the findings, and the proce-
dures for hardening the server. The security assessment used five different
tools and we were able to find a previously unknown vulnerability that
allowed unauthorized writes to the database of the target system.

Keywords: Vulnerability Assessment · Penetration Testing · Offensive
Security · Location Proof Systems · REST API Security.

1 Introduction

The Internet of Things (IoT) can be described as a very large network where
many and diverse devices interact with each other [4]. IoT devices inherit the
security-related issues common to computer networks but add challenges be-
cause they are limited by their small memory, lack of processing power [4], and
battery capabilities. To deal with security challenges, some organizations subject
their systems to vulnerability assessment and penetration testing to detect flaws,
having in mind the perspective of an attacker [13]. In this paper we evaluate the
security of an exposed REST API for the CROSS smart tourism application [6]
that uses location proofs developed in the SureThing [3] project1. We used dif-
ferent tools, distributed over three iterations of attacks. The attack iterations
ranged from simple vulnerability analysis tools to fuzzing techniques. We use
and assess each tool individually. In the end we improved and hardened the ex-
isting deployment. Even though this work is specific to a particular system, we
provide some insight on how to perform offensive security testing.

1 http://surething-project.eu.



The remainder of this document is structured as follows: Section 2 gives an
overview of concepts and works on location proof systems; Section 3 describes the
target system of our work; Section 4 describes our approach; Section 5 presents
the results and, finally, Section 6 concludes this article.

2 Background

A threat consists in any intention to cause and inflict damage to a system [13]. A
threat can only be considered as a potential action when performed by a threat-
actor, motivated and capable enough to do it. An attack path relates to the steps
a threat-actor has to go through to plan, prepare, and later execute an attack.
In turn, the attack surface corresponds to the different ways through which a
threat-actor is able to gain access to a system [7].

A system is likely to have vulnerabilities: both in code and in the infrastruc-
ture. If and when exploited, such vulnerabilities may result in the violation of
the security assumptions of a system [12]. In essence, vulnerabilities have to be
individually assessed. That is why the correct use of security tools is important
as they will help detect and even mitigate vulnerabilities.

2.1 Offensive Security

Vulnerability assessment is the process of analysing a system to find, identify,
and prioritize vulnerabilities in terms of their risk. Once identified these vulner-
abilities can be mitigated, leading to the reduction of the attack surface of the
system. In turn, penetration testing consists in the execution of an attack tar-
geted at a specific system in order to identify and measure the risks associated
with the possible exploitation of the attack surface. In other words, penetration
testing adds to vulnerability assessment by performing exploitation [13]. Offen-
sive security can be seen as a proactive strategy of protecting a system, with an
emphasis in an adversarial approach.

2.2 Location Proof Systems

Many applications rely on the location of its users in order to provide them with
services, but many times the information is not verified. Without proper verifi-
cation, the applications are susceptible to location spoofing attacks [5]. Users of
a system that know about this problem may use it for their own benefit. This
is where location proof systems can help. These systems use the definition of
location proof made by Saroiu and Wolman [10] and implement verification pro-
cedures. Zhu and Cao [14] proposed APPLAUS and introduced users themselves
as witnesses to verify claims. Many other systems follow a similar approach,
such as CREPUSCOLO [1], SureThing [3], and PASPORT [9], to name a few.
These systems, just like any others, rely on the isolation of processes and on
the absence of vulnerabilities to make sure that the defined security policies are
correctly enforced.



3 Target System

The selected target system is CROSS [6], a smart tourism application that re-
wards its users after they visit a set of predefined points of interest in a city, and
uses the SureThing [3] framework for location proofs. A CROSS deployment is
represented in Figure 1 and is composed by a server exposing a REST API to a
mobile client application.

CROSS-server CROSS-client

Internet

Fig. 1. CROSS system components.

The CROSS system makes location proofs with one of three different strate-
gies: scavenging, time-based one-time password (TOTP), and kiosk. The scaveng-
ing strategy simply relies on the already existing Wi-Fi networks infrastructure
in an urban area. The TOTP strategy relies on special Access Points (APs)
that broadcast one-time values as SSID (Service Set Identifier), the identifier
a user sees for each Wi-Fi network as its name. Each value is determined by
the current time and by a keyed hash function. Finally, the kiosk strategy relies
on interactions of the user with a physical device placed at a specific location
that, in practice, requires the user to be physically present. The kiosk acts as a
trusted witness and is more effective than the previous strategies at preventing
Sybil attacks [2], i.e., avoiding users with multiple accounts.

Regarding more potential attacks, a user can cheat in the scavenging strat-
egy once the existing networks at a given location are known and do not change.
The scavenging strategy is also subject to network/Wi-Fi spoofing attacks [11]
because it relies on an unmanaged infrastructure, formed by the already existing
Wi-Fi networks. This third-party infrastructure is not controlled and not authen-
ticated, making it exploitable by what is also known as an evil twin attack [8].
The TOTP strategy offers a stronger security guarantee than the scavenging
strategy. The TOTP value changes from time to time and is only known by each
AP and by the server for verification purposes. This strategy is still vulnerable
to a user, now being an attacker, that relays values to another user. The kiosk
strategy is able to prevent the two mentioned attacks but is still vulnerable to
Denial of Service (DoS) attacks.

Providing its users with a REST API, CROSS is therefore exposed to the
outside, being a vulnerable entry point for an attacker to exploit.



4 Attack Approach

We start by describing the deployed testbed and the considered network topolo-
gies. We end with a description of the toolset and the methodology.

4.1 Testbed

The deployed testbed consists in several virtual machines. The core of the testbed
is made of the CROSS server and client, the attacker machine, and additional
virtual machines to simulate the rest of the network. With the exception of the
client, all the virtual machines are provisioned with VirtualBox. The CROSS
server runs 64-bit Ubuntu Linux 20.04. The CROSS client runs Android 5.1
emulated using Genymotion. The attacker machine is a 64-bit Kali Linux version
2020.4. The routers run pfSense. We opted to use the internal network mode
composed only of virtual machines. One of the network adapters of the router
uses bridged network mode, allowing all virtual machines to have Internet access.

4.2 Network Topologies

We deployed two different network topologies, but the core of the testbed, as
described in 4.1, remained the same. The main difference is where the virtual
machine of the attacker is positioned in the network.

One topology, represented in Figure 2, places the attacker inside the network.
It is either part of the network of the CROSS client or has already managed to
gain access to it. In the figure, “S” stands for server and represents the router of
the subnetwork where the CROSS server is placed. Also in the figure, “I” stands
for ISP (Internet Service Provider) of the CROSS client.

CROSS server
(Ubuntu VM)

CROSS client
(Genymotion)

Attacker
(Kali Linux VM)

CROSS client's code
(Ubuntu VM)

Server's subnetwork
(192.168.21.x/24) Internet

(192.168.11.x/24)

Client's ISP subnetwork
(192.168.22.x/24)

S
Internet
(pfSense)

VirtualBox's host-only network
(192.168.3.x/24)

I 

Fig. 2. Topology of the network when the attacker is inside the network of the client.



The “Internet” router, the router of the subnetwork of the CROSS server,
and the router of the subnetwork of the CROSS client have statically assigned
IP addresses. The IP addresses of the remaining virtual machines are assigned
through DHCP2.

In the other topology, the attacker is outside the network, i.e., it has no access
to the network where the CROSS client is placed, as shown in Figure 3. In the
figure, “A” stands for attacker and represents the ISP of the attacker.
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Fig. 3. Topology of the network when the attacker is outside the network of the client.

It is worth mentioning there was a need to add an “any-to-any rule” to the
routers to allow the required communication between the virtual machines.

4.3 Attack Tools

Here we describe the toolset, including: enumeration, vulnerability assessment,
and fuzzing tools.

Enumeration Tools Nmap3 is a tool that can determine what hosts are avail-
able in a network. It can also find which services and operating system a host is
running.

AMAP4 is another scanning tool that tries to identify applications running
on a given host, even if running on a different port than usual.

2 The Dynamic Host Configuration Protocol can automatically assign and distribute
IP addresses within a network.

3 Network Mapper. Available at https://nmap.org.
4 Application MAPper. Available at https://hackerschoice.github.io/.

https://nmap.org
https://hackerschoice.github.io/


Vulnerability Assessment Tools OpenVAS5 is a tool that helps identify a
system for known weaknesses. It does so by matching known vulnerabilities of a
specific system with the version of the software running on that system.

Google Tsunami6 is a general purpose network security scanner, offering an
extensible engine through the use of plugins. It uses Nmap as a port scanner
during the first step, and then it uses some fingerprinting techniques to try to
identify the services running at each of the scanned open ports.

Fuzzing Tools We used fuzzing tools to verify if the CROSS server would
stop its normal operation, to the point where it would no longer respond to the
requests of clients. We had the constraint that we needed a fuzzer that could be
used through the network. After comparing some available fuzzers we decided
to use FFUF 7.

4.4 Attack Iterations

We performed the attacks with the machine of the attacker placed at both of
the two defined network positions: inside or outside, as described in 4.2. Having
full access to all deployed virtual machines from any virtual machine allows for
more accurate results when running the vulnerability assessment and security
scanning tools. In a real scenario this could not be the case or we could not make
this assumption. Yet, our objective was to know if and which vulnerabilities were
present in the target system.

We introduced a new tool at each new iteration, following an incremental
approach. The results gathered from previous iterations were used as the basis
for the next ones, and provided information for later hardening the target system.
As part of the vulnerability analysis stage, we did two separate iterations. The
first one involved using Nmap and OpenVAS. In the second we used Tsunami
as a network security scanner. As a third attack iteration, we introduced some
customs attacks in the form of fuzzing techniques. Figure 4 gives an overview of
the attack iterations.

5 Results

We use and assess each attack tool listed in Section 4.3 individually. The output
of several tools can be combined in the future to perform more advanced attacks.

We started by finding the IP address of the CROSS server, even though we
knew the IP of all deployed virtual machines beforehand. Next, we present the
steps taken to find it:

1. Initialization of Wireshark8;

5 Open Vulnerability Assessment System. Available at https://openvas.org/.
6 Tsunami. Available at https://github.com/google/tsunami-security-scanner.
7 Fuzz Faster U Fool. Available at https://github.com/ffuf/ffuf.
8 Wireshark is a free and open-source network packet analyzer. Available at https:

//www.wireshark.org/.

https://openvas.org/
https://github.com/google/tsunami-security-scanner
https://github.com/ffuf/ffuf
https://www.wireshark.org/
https://www.wireshark.org/
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Fig. 4. Different iterations of the performed attacks.

2. Start capture of packets on the eth0 interface;
3. Use the CROSS client application to request the rewards page

(/v1/users/@me/rewards);
4. Infer that the IP address of the server is 192.168.21.14, by inspecting the

exchanged packets shown in Figure 5;
5. Conclude that the CROSS server service is running at TCP port 13000, by

inspecting the packets exchanged between the CROSS client application and
the CROSS server;

6. Infer all available paths are sub-directories of the root /v1 path.

5.1 Nmap Results

We used Nmap to perform several ports scans of the target system with the
192.168.21.14 IP address. Starting with the simple default port scan, we used
the option to probe any open ports to determine the service and version running
at each port. By default Nmap only scans the most commonly used 1000 TCP
ports. As a result, this initial port scan did not detect any open ports; we only
gathered the information that the target system is at a distance of 4 hops from
the attacker machine.

We next moved on to perform a broader port scan including all TCP and
UDP ports, again probing any open ports for their service. This time Nmap
was able to detect that TCP port 13000 was open, as we would expect. Yet
Nmap wrongly detected its service, detecting it as a DAAP service9. We used
the daap-set-library script from the Nmap Scripting Engine (NSE) to try to get
more information about this service but we did not get any further information.
UDP ports 631, 5353 and 53574 were also detected but as open|filtered, meaning
Nmap was not able to determine if these ports were actually open or simply

9 The Digital Audio Access Protocol is a proprietary protocol introduced by Apple in
its iTunes software to share media across a local network.



Fig. 5. Wireshark packet captures done by the attacker machine that shows some of
the exchanged packets between the CROSS client mobile application and the CROSS
server after a user requests its rewards. The ‘length info’ rows correspond to rows 1-7
of the captures.

filtered since it did not get a response from them. A port that Nmap reports
as open|filtered may also mean that the probe used by Nmap was dropped by a
packet filter, which was not the case, given the testbed configuration (described
in Section 4.1) and deployed network topologies (Section 4.2). UDP port 631
was detected by Nmap and is usually used for running the IPP10 service. In the
used Linux machine, the service running at port 631 was CUPS11. UDP port
5353 was detected by Nmap and is registered as the port to run the mDNS12

protocol. The third UDP port Nmap detected as open|filtered - 53574 - has no
common service associated with it. Perhaps for that same reason, Nmap was not
able to detect the service listening at that port.

Overall, Nmap correctly detected the operating system of the virtual machine
where the CROSS server is running. Yet, it did not detect its Linux kernel version
nor the exact Linux distribution (Ubuntu). These results could be related with
the fact that the target system is running inside a virtual machine.

Furthermore, Nmap was also able to detect the PostgreSQL database used by
the CROSS server, listening at port 5432, but only after we explicitly configured
PostgreSQL to accept outside connections.

We decided to scan port 13000 also with AMAP, since Nmap was unable to
correctly determine the service running there. After making sure AMAP also

10 The Internet Printing Protocol is used to allow client devices, such as computers, to
communicate with printers.

11 The Common Unix Printing System allows a Unix-based computer to operate as a
printing server.

12 The multicast DNS protocol can resolve hostnames to the corresponding IP addresses
within a small network.



reported TCP port 13000 was open, we tried to map the service running at that
port by sending some triggers and analysing their responses, which did produce
any relevant information. AMAP was also not able to gather useful data about
the specific service running at TCP port 13000.

5.2 OpenVAS Results

OpenVAS was used to perform various scans. These included scans to all ports
of both TCP and UDP, all ports of one of the protocols (TCP or UDP), or only
targeted at the TCP port 13000. The only vulnerability OpenVAS was able to
detect was the implementation of TCP timestamps13 active in the CROSS server
virtual machine. This vulnerability is scored 2.6 in the base group of CVSS14

and is therefore considered a low severity vulnerability.

Based on the results gathered after running OpenVAS, we moved on to make
the suggested changes in order to harden the target system. The solution in-
volved editing the /etc/sysctl.conf file, which required root privileges, to add
the line net.ipv4.tcp timestamps = 0 and then execute the command sysctl -p
to apply the change to Linux. The equivalent procedure would be different for
other operating systems. Figure 6 represents the change on the configuration of
the target system.

Disable the implementation/usage of TCP timestamps

Stock configuration
(Virtual machine snapshot version 1.0.0)

Hardened configuration
(Virtual machine snapshot version1.0.1)

Fig. 6. Changes made to the configuration of the CROSS server to harden it according
to the changes suggested by OpenVAS.

The TCP timestamps feature can be used by an attacker to compute the
uptime of a system, i.e., compute for how long that system has been booted. An
attacker may then be able to infer if a system is still running a previous version
of its operating system or installed software, as some updates or patches require
a system reboot. By changing this setting, these attacks are made more difficult.

13 TCP timestamps are defined in RFC 7323, TCP Extensions for High Performance.
Available at https://tools.ietf.org/html/7323.

14 Scoring system used to describe and rate IT vulnerabilities. More information avail-
able at: https://www.first.org/cvss/.

https://tools.ietf.org/html/7323
https://www.first.org/cvss/


5.3 Tsunami Results

By default, Tsunami only uses Nmap to scan the most common 1000 TCP ports.
Therefore the port where the CROSS server is listening at (13000) was not de-
tected. Tsunami did not proceed to the next step of vulnerability verification.
We decided to change the configuration Tsunami uses by default, as we knew
TCP port 13000 was open. The port was promptly detected once we overrode the
default values that specify which ports Nmap should scan. This allowed the pro-
cess employed by Tsunami to continue since it detected an open port. Namely, it
moved to use fingerprinting techniques to try to identify which service is running
on the port. As expected because of the use of Nmap, it was again detected as a
DAAP service. Finally, Tsunami used its default vulnerability detection plugins
targeted at the TCP port 13000, but they did not find vulnerabilities.

5.4 Fuzzing Results

FFUF was used with two collections of wordlists: SecLists15 and RobotsDisal-
lowed16. SecLists contains a collection of multiple wordlists: from usernames and
passwords to data pattern matching. RobotsDisallowed holds a list of the most
commonly disallowed directories present in robots.txt from top websites.

Directory discovery was done assuming the existence of the /v1 path, consid-
ering previously gathered information described in the beginning of this section.
We were able to find the following seven directories under the /v1 path:

– /users, that returned the 405 (Method Not Allowed) HTTP code;
– /meta, which returned a 200 (OK) HTTP code;
– /rewards, which returned a 200 (OK) HTTP code;
– /trips, that returned the 401 (Unauthorized) HTTP code;
– /routes, which returned a 200 (OK) HTTP code;
– /datasets, which returned a 200 (OK) HTTP code;
– /pairs, that returned the 405 (Method Not Allowed) HTTP code.

Using a wordlist from the RobotsDisallowed list we discovered a sub-directory
of the /trips path - /trips/upcoming - that also returned a 401 HTTP code.

We decided to send some POST requests as both /users and /pairs paths
and the server returned a 405 (Method Not Allowed) HTTP code to the requests.
We used different wordlists, each containing a list of values meant to disrupt the
normal function of a system. Both paths accepted the null value, returning a
200 (OK) as the response status code. In the following requests containing the
null value we got a 409 (Conflict) HTTP code as response. Namely, the /users

path responded with the following: “message”: Username in use. This meant
that we were trying to insert it in the same table of the database. The remaining
values either failed or could not be decoded, all returning 400 (Bad Request)
status codes. None of these values managed to stop the normal operation of

15 https://github.com/danielmiessler/SecLists
16 https://github.com/danielmiessler/RobotsDisallowed

https://github.com/danielmiessler/SecLists
https://github.com/danielmiessler/RobotsDisallowed


the CROSS server. Yet, we managed to write the null value to the table where
the existing users and corresponding usernames are kept using the /users path.
As for the /pairs path, the null value was written to a different table of the
database.

We tried to do database enumeration by sending some POST requests, using
two different wordlists. Yet, we were not able to do any evident damage. Nor were
we able to get any further information through database enumeration. Actually,
all responses returned a 400 (Bad Request) HTTP code followed by the “invalid
character” response.

We also tried to do file discovery targeted at the /users and /meta paths.
Together with a wordlist designed to perform directory discovery, we used two
other wordlists containing different known file extensions. One of these wordlists
contained the most commonly used file extensions, while the other contained
common web file extensions.

We also tried to do a directory discovery for any sub-directories of the /users
and /meta paths but we were not able to find any.

Performing these fuzzing techniques produced quite a large number of re-
quests, almost creating a Denial of Service (DoS) attack. We could attest this
by using the CROSS client application at the same time and seeing the CROSS
server indeed took much more time to respond to the requests.

6 Conclusion

In this paper we focused on the security of a specific location proof system but our
approach can be adapted to other systems. We showed a vulnerability assessment
and penetration testing techniques from an attacker’s perspective. The security
assessment was done with five tools, namely Nmap, AMAP, OpenVAS, Tsunami,
and FFUF. Nmap and AMAP ran port scans but did not find any open ports
that could be used by an attacker as an entry point. OpenVAS only detected a
low severity vulnerability. FFUF used a specific fuzzing value and was able to
make unauthorized writes in the database, even though it was not able to do
much damage. The obtained results were used to harden the target system and
reduce the attack surface.

Future work will focus on adding more tools to the used toolset, namely
exploitation tools. Apart from that, we will organize a competitive tournament
where multiple teams will compete against each other to perform attacks. The
results from these tournaments are expected to further enrich the offensive se-
curity assessment.
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