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Abstract. The vast expansion of mobile and ubiquitous computing has
led to the daily and widespread use of Location-Based Services. These
services detect locations and are trusted by applications. However, the
services may fail or be subject to fraud. This is a problem for critical ap-
plications that rely on accurate location data. One approach to deal with
location spoofing is to require the use of Location Certificates (LCerts).
LCerts allow any party to independently verify the location claim and
digital signatures. However, by themselves, they do not provide trusted
storage and verification at a later date. In this work we propose a Loca-
tion Certificate Transparency framework to provide accountability to all
the entities involved in location proofs: provers, witnesses and verifiers.
We developed a tamper-proof ledger based on Merkle-Trees and provide
APIs for the storage, retrieval and verification of LCerts by monitors and
auditors, to further protect end-users from malicious parties.

Keywords: Location Certificate - Certificate Authority - Digital Cer-
tificate - Location - Certificate Transparency - Security.

1 Introduction

Information and communication technologies are growing with the expansion of
mobile and ubiquitous computing. The technology is affordable, and with the
widespread availability of GPS and Wi-Fi receivers, the use of Location-Based
Systems (LBS), where the location is captured by the device and then trusted
by an application, is now very common. However, in these systems, the location
can be forged and since some apps critically need the real device’s location we
need to ensure that the location is a certified attribute, as proposed by Saroiu
and Wolman [8], and implemented in systems such as APPLAUS [9], CREPUS-
COLO [I]. SureThing [4] goes beyond a single system and provides a framework
for Location Certificates (LCerts). In SureThing, provers issue a Location Claim
(LClaim), that can then be endorsed by multiple witnesses. The verifier may
accept or reject a LClaim. If it accepts the LClaim, it will generate a Location
Certificate (LCert). It is worth mentioning that these documents — Location
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Claim, the endorsements from the witnesses and the Location Certificate — are
all digitally signed documents. Each entity has a private key, and a certificate
for the public key. A certificate is a document that is used to prove the own-
ership and assert a set of attributes related with the owner identity, including
the public key. A certificate also contains the digital signature of an entity that
verified the certificate’s contents, which is called a Certificate Authority (CA).
If we guarantee that the signature of the certificate is valid and the software ex-
amining the certificate trusts the CA that issued the certificate, then we can use
this public key to verify signatures made with the corresponding private key and,
consequently, we can securely communicate with the owner of the certificate.

There are different attestations taking place: the CA attests the identity of
the signer, whereas the Verifier attests the location claim to produce an LCert.
However, the LCert, by itself, does not provide trusted storage and verification
at a later date. In this work, we propose to bring what is called Certificate Trans-
parency in the World Wide Web environment to the SureThing framework in
the form of Location Certificate Transparency. Thus, the verifiers, when receiv-
ing a Location Claim issued by a prover, generate the LCert and submit it to
a tamper-proof, append-only verifiable public log so that it can be re-checked
later, when needed.

The public log has other types of clients, monitors and auditors. Monitors
contact the log servers periodically to watch for suspicious LCerts. A suspicious
LCert can be a certificate that says that a user is in a place at a specific time,
and then another certificate says that the same user is in another place, which
is physically impossible to happen in the time interval between certificates. An
example can be a certificate saying that a user is in Portugal and, one minute
later, another certificate says the same user is in Sweden. We can then conclude
that at least one of the certificates is suspicious, if not both. Auditors can ver-
ify that a log is consistent, has added the new entries and was not corrupted
retroactively by someone inserting, deleting or modifying one or more LCerts.
These two clients can communicate between each other, also known as gossip,
in order to detect inconsistent views of the logs.

The main objective of this work is to help to detect the tampering of location
certificates and also suspicious LCerts as it provides a transparent view of all the
location certificates that are being issued and their contents. We developed the
ledger and used it for storing location certificates with integrity guarantees so
that we can use them for future revalidation. Another objective is to enable the
classification of witnesses as trustworthy or not, which will be used to further
validate a presented LCert.

The remainder of the document is structured as follows. The most relevant
background work is discussed in section [2} Section [3| describes the architecture
of the proposed solution and section [ its implementation. Section [5] shows the
system evaluation results. Finally, in section [6] we conclude the paper.
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2 Background

Certificate Transparency is something that is already deployed in the World
Wide Web environment for the use of HTTP over TLS (HTTPS) in this section,
we present the system used for logging TLS certificates where we describe the
most important concepts. Also, in order to assure the correctness of Certificate
Transparency, we also present some Gossip protocols.

Laurie et al. [B] described a system for publicly logging Transport Layer
Security (TLS) certificates as they are issued. In this system, anyone can audit
Certificate Authority (CA) activity to see if suspect certificates are being issued
or even review the certificate logs themselves. The goal is to have logging as one of
the criteria for a valid certificate which means that clients will eventually refuse
to accept certificates that are not logged. Therefore, CAs are forced to log every
certificate that they issue. When a certificate is submitted to the log, the log must
return a Signed Certificate Timestamp (SCT), which corresponds to the log’s
promise of incorporating the certificate in the Merkle Tree within a Maximum
Merge Delay (MMD). The append-only property of these logs is achieved using
Merkle Hash Trees that are described by Merkle [6] and by Mykletun et al. [7]
and illustrated in figure [1} Each version of the log is a superset of the previous
version. This data structure is helpful as provides evidence to trust the logs: if
a log tries to show different views to different people, this can be detected by
comparing tree roots and consistency proofs.

Types of Log Clients In this protocol, there are four different types of clients:
the submitters, the TLS clients, the monitors and the auditors .
Submitters submit certificates to the log and can use the returned SCT to
construct a certificate or use it directly in a TLS handshake.
TLS clients receive SCTs alongside or in server certificates, and not only do
they make a validation of the certificate and its chain, but also validate the SCT
by computing the signature from both the SCT data and certificate, and verify
the signature using the correspondent log’s public key.
Monitors are the entities that observe logs and check if they behave correctly.
Monitors need to inspect every new entry in each log and they may keep copies
of entire logs. The protocol that they use is the following:
1. Fetch the current Signed Tree Head (STH).
2. Verify its signature.
3. Collect all the entries in the tree corresponding to the STH.
4. Confirm that the tree made from the collected entries produces the same MTH
as the one in the STH.
5. Get the current STH. Repeat until the STH changes.
6. Check the STH signature.
7. Collect all the new entries in the tree corresponding to the STH. If these entries
are unavailable for a long period period, then it means the log is misbehaving.
8. Either:

1. Verify that the updated list of all entries generates a tree with the same
MTH as the one in the new STH.
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Or, if it is not keeping all log entries:

2. Get a consistency proof for the new STH with the previous STH.

3. Verify the consistency proof.

4. Check if the new entries generate the corresponding elements in the con-
sistency proof.
9. Go to Step 5.
Auditors typically perform two functions: they can verify any pair of STHs
from the same log by requesting a consistency proof, and also they can request
Merkle Audit Proofs to check if a specific certificate is included in the log or not.

Next, we briefly describe the Merkle Tree Hash structure, the Audit proce-
dure and the Consistency procedure. Intuitively, we see how to build the tree,
and how to both an audit and a consistency proof. A thorough description of
Merkle Trees can be found in [6lf7].

Merkle Hash Trees The Merkle Tree Hash’s input is a list of entries that are
going to be hashed using SHA-256. Thus, forming the leaves of the Merkle Hash
Tree. The output is going to be a 256-bit Merkle Tree Hash (MTH).

Given an ordered list of n entries Dn] = {d(0), d(1), ..., d(n-1)}, the Merkle
Tree Hash(MTH) is defined as follows:
If the list is empty, then the MTH is the hash of an empty string:

MTH({}) = SHA —256()
If the list has one element (also known as a leaf hash), then the MTH is:
MTH({d(0)}) = SHA — 256(0z00 || d(0))

Finally, for n >1, let k be the largest power of two smaller than n. The Merkle
Tree Hash of an n-element list D[n] is then defined recursively as

MTH(DIn]) = SHA — 256(0201 || MTH(D[0 : ]) | MTH(D[k : n]))

where || stands for concatenation and D[k1:k2] represents the list {d(k1), d(k141),...
d(k2-1)} of length (k2 - k1).

Merkle Audit Proofs A Merkle audit path is the list of missing nodes required
to compute the nodes leading from a leaf to the root of the tree. If the root
computed from the audit path and the true root are a match, then the audit
path is proof that the leaf exists in the tree.

Given an ordered list of n entries to the tree, D[n] = {d(0), ..., d(n-1)}, the
Merkle audit path PATH(m, D[n]) for the input d(m), 0 <= m <n, is defined
as follows:

The path for the single leaf in a tree with a one-element input list D[1] = {d(0)}
is empty:
PATH(0,{d(0)}) = {}
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For n >1, let k be the largest power of two smaller than n. The path for the
element d(m) in a list of n >m elements is then defined recursively as:

PATH(m,D[n]) = PATH (m,D[0: k]) : MTH (DIk : n])
for m <k; and
PATH(m,Dn]) = PATH(m — k,D[k : n]) : MTH(DI0 : k])

for m >= Kk,

where : stands for concatenation of lists and D[k1:k2] represents the list {d(k1),
d(k1+1),..., d(k2-1)} of length (k2 - k1).

Example of audit proofs

Figure [1] shows an example of a Merkle tree. For example, the audit path for dO
is [b, h, 1] because, if we have d0, then we have a. To build g we need b. Then, we
need h to build k and finally we need | to generate “hash”. Another example is
the following: the audit path for d6 is [i, k]. This time we have d6 which means
we also have j. To build 1 we need i and finally to generate “hash” we need k.

Fig. 1. Merkle Tree Example, adapted from [5]

Merkle Consistency Proofs A Merkle Consistency Proof allows you to con-
firm the tree’s append-only property. The most recent version of the tree includes
everything that was in the earlier version, in the same order, and all new ele-
ments come after the elements in the older version. If we consider m as the
number of elements in the older version and n the number of elements in the
most recent version, where m <= n, we can say that a consistency proof must
contain a group of intermediate nodes enough to confirm MTH(DIn]), such that
a subgroup of the same nodes can be used to verify MTH(D[0:m]).
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The Merkle consistency proof PROOF(m, D[n]) for a preceding Merkle Tree
Hash MTH(D[0:m]), 0 <m <n, considering an organized list of n tree entries,
D[n] = {d(0), ..., d(n-1)}, is defined as:

PROOF(m, D[n]) = SUBPROOF (m, D[n], true)

The subproof for m = n is empty if the boolean is set to true as it indicates that
there were no changes made to that particular subtree, implying that its MTH
is known:

SUBPROOF(m, D[m], true) = {}
Otherwise, the subproof for m = n is the MTH(D[0:m]):

SUBPROOF (m, D[m], false) = {MTH(D[m])}

For m <n, let k be the largest power of two smaller than n. The subproof may
be defined recursively as it follows:

If m <= k, the right subtree entries D[k:n] only exist in the current tree. We
prove that the left subtree entries D[0:k] are consistent and add a commitment
to D[kn]:

SUBPROOF(m, Dln),b) = SUBPROOF (m, D[0 : k],b) : MTH(D[k : n))

If m >k, the left subtree entries D[0:k] are identical in both trees. We prove that
the right subtree entries D[k:n] are consistent and add a commitment to D[0:k]:

SUBPROOF(m, D[n],b) = SUBPROOF (m—k, D[k : n], false) : MTH(DI[0 : k])

where : stands for concatenation of lists, and D[k1:k2] represents the list {d(k1),
d(k14+1),..., d(k2-1)} of length (k2 - k1).

The use of this algorithm can give clear evidence that a log is consistent,
meaning that there are not modified certificates in the log and that it has not
been branched before.

Example of consistency proofs
Figures [2]and [I|show an example of a Merkle tree that was built in incremental
steps to show an example of consistency proof. The consistency proof between
hash0 and hash is [c, d, g, ] where ¢ and g are used to verify the old Merkle tree
and d and | are additionally used to show that the new tree is consistent with
the old tree.

2.1 Certificate Transparency Gossiping

CT data replication, usually designated as gossiping is required in the secu-
rity model of CT even though it does not have any significant deployment yet.
Therefore, Chuat et al. [2] proposed some Gossip protocols to detect anomalies
without losing privacy and with a small overhead. The general framework of
these protocols is shown in Figure 3] As we can see, in the beginning, the server
submits the certificate to the log and receives the correspondent SCT. Then,



Location Certificate Transparency for third-party-verifiable location proofs 7

Fig. 2. Merkle Tree in first state, adapted from [5]
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Fig. 3. General Framework for both protocols, adapted from [2]

the auditor (client) gossips the first message, m1, and the server responds with
the certificate, the correspondent SCT and a gossip message m2. The content
of these messages is what varies in both protocols. In the protocol where they
only exchange STHs, the message is simply a valid STH. In the second protocol,
they exchange STHs and consistency proofs, so the content of these messages
consists in m = (Sa,Sb,Pa,b) where Sa is the STH of a tree with size a, Sb is the
STH of a tree with size b and Pa,b is the consistency proof between tree sizes
a and b. After this exchange of messages, both the client and the server update
their local state. Depending on the content of the received message, they may
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need to request a proof from the log to conclude this update. If an anomaly is
discovered, the auditor reports it to a monitor.

If we have a system with multiple logs, we can execute the protocol in parallel
for each log.

3 Location Certificate Transparency

3.1 Architecture

Figure [ provides an overview of the interactions between the main entities that
contribute to the issuance of a location claim and the storage of a location
certificate. The entities together create the Location Certificate Infrastructure
(LCI) that we need to achieve the required transparency and security.

12: Search

5:8LCT 8 Audit Result -

v 4

1. LClaim
11: LCert

-»

13: LCert filtered

IMobile App Client(Prover)| 2 LClaim

4: BLCT LCert
14: LCen filtered

7. Audit Path 8TH
10: Consistency Proof

Fig. 4. Location Certificate Infrastructure

Log Server An append-only public log server (ledger) that stores logs of the
Location Certificates (LCerts) so that everyone can audit them when needed.
The certificates are created by the prover and sent out to the verifier and then
stored into the log server. However, they are not stored immediately, the log
server returns a Signed Location Certificate Timestamp (SLCT) that acts as a
promise to say that this specific certificate will be stored in the log within a
fixed time interval called the Maximum Merge Delay (MMD). Everything done
by the log server will be verified by other trusted entities such as monitors and
auditors;
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Monitor A service that, continuously, watches for suspicious location certifi-
cates. It contacts the log server and downloads an entire copy of the log. It also
verifies the consistency between the versions of the log. Finally, it may also be
used as a search mechanism that retrieves location certificates for a criteria, for
example, all location certificates emitted by a particular device. If a prover issues
an invalid LClaim, monitors will detect it and nothing bad will happen to the
system.

Auditor A service that verifies if the log is behaving correctly and is consis-
tent.It sends to the log server two Signed Tree Heads (one for an old version of
the Merkle tree of location certificates and one for a newer version) and the log
server calculates the consistency proof and sends the result back to the auditor.
The Signed Tree Heads can be obtained through the execution of gossip protocol
between the auditor and the monitor where they exchange Signed Tree Heads
and can check if a particular location certificate appears in the log.

Verifier An entity that is authorized by the Location-Based-Service (service
provider) to verify locations claimed by the provers. It can be a mobile user in
the vicinity of the claimer or a stand-alone service managed by the LBS.

Prover A mobile user who claims a certain location and subsequently has to
prove the claim’s authenticity. It receives one or more location endorsements
from its neighbour devices (witnesses) when it visits a site. The prover then
submits the received location endorsements to the LBS as part of the location
claim/request.

Certificate Authority (CA) An authentication service responsible for vali-
dating the identities of the prover, verifier and witnesses that involved in the
creation of the location certificates.

3.2 Interactions

Figure [4 illustrates the interactions between the entities of the Location Certifi-
cate Infrastructure (LCI). First, the mobile app client (prover) creates a location
claim and sends it to the verifier. If the verifier accepts it, it generates a loca-
tion certificate and submits it to the log server and then receives an SLCT, a
timestamp promise from the log server to store the location certificate. Then,
the verifier returns to the prover the location certificate and the also the received
SLCT. A prover may also want to know if a specific SLCT that he has is already
stored in the log server. The prover sends his SLCT to the auditor and the au-
ditor forwards it to the log server. The log server calculates the audit proof and
returns the result (audit path and the STH) to the auditor so that he can check
if the log is telling the truth. If everything is correct, the auditor returns the
audit result to the prover. Figure [5| shows the sequence of interactions between
the entities.
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Fig. 5. Background Work

4 Implementation

The entities of the Location Certificate Infrastructure (LCI) are implemented as
services using the Spring framework [3]. We used PostgreSQL as main database
for storage and all the communications were done over REST calls using the
google protocol buffers (protobuf) as payload and data-encoding format and
the HTTPS (Hypertext Transfer Protocol Secure) to protect the privacy and in-
tegrity of the exchanged data between the entities. The structures of the messages
are defined as part of the SureThing framework libraries [4].

5 Evaluation

In this section, we present practical experiments made to asses the efficiency
and performance of the developed LCI. We used Hot Spots that show the time
spent on each method during the tests as our metric to see what methods are
taking the most of the time. The tests included creating 100 and 1000 Location
Certificates, respectively, and store them all into the ledger. Then, the prover
creates another LCert with a specific value on one of its fields and sends it to
be stored. After that, we tested both 1) audit proof and 2) consistency proof.
Finally, we make three queries to the monitor, where the first two return all
the LCerts created and the third one just returns the LCert created after. It is
also worth mentioning that for every Maximum Merge Delay (MMD) the Ledger
emits a new STH and the Monitor downloads the new log’s contents if they exist
and gossips with the auditor to check if the ledger has lied or not.

The following values were taken using an AMD Ryzen 9 5900X 12-Core
Processor 3.70GHz.
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Fig. 7. Hot Spots for 1000 LCerts

5.1 Hot Spot

Looking for both figures we can observe that as the size of the sample grows,
the more relative time we spend on signing objects which lets us conclude that
the algorithms we implemented about the merkle trees are not the bottleneck of
the system.
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6 Conclusion

In this paper we studied the current state of certificate transparency in the
HTTPS ecosystem and its components. Then, we proposed a solution in section[3]
that consists of some entities, each with its own functionalities, and together
they work to form an infrastructure that provides location proof transparency.
We believe that our solution will help to check the validity of the location cer-
tificates that are being issued as they are stored in a public log. Thus, we can be
more secure when using those location certificates for smart tourism or medical
appointments, as these two are the current use cases of the SureThing project.
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