

Device location certification for the Internet of Things

Miguel.Pardal@tecnico.ulisboa.pt

Universidade de Aveiro Thursday, December 19th, 2019

Outline

- Research context
- SureThing project
 - Mobile ad-hoc witnesses
 - Wi-Fi Scavenging
 - Bluetooth proximity
- Current and future work

Research context

Distributed Systems Group

- Security & Privacy in the new *frontiers* of Information Technologies and Computer Science:
 - Internet of Things & Cloud

Security & Privacy

- CIA properties:
 - Confidentiality
 - Integrity
 - Availability
- TIU properties:
 - Transparency
 - Intervenability
 - Unlinkability

Digital Citizenship

From *distributed* to *ubiquitous* computing

Figure credits: Marc-Oliver Pahl

Smart Spaces

The Internet of Things

The interface between the *physical* and *digital* world that allows one to gather data from everyday objects and also *control* them.

Figure: IBM

Electronic business

Augmented reality

Hyper-reality

Concept video by Keiichi Matsuda: https://vimeo.com/166807261

Hyper-reality (turned off)

Hyper-reality gone wrong

IoT attack surfaces

The Internet of ransoms ?

Image credits: Joy of Tech

Why new research is necessary

- Internet threats so far have been most about *confidentiality*
 - Bad things happen to our data
 - Most problems today are not solved, only mitigated
- On the Internet of Things, attackers now have "hands and feet"
 - The ability to directly affect the physical world
 - Attacks against *flesh, steel, and concrete*

Bruce Schneier to Motherboard Magazine

"The Internet of Things Will Turn Large-Scale Hacks into Real World Disasters"

SureThing project

Project goal

- Create and validate location certificates
 - Devices can make proof of their location or ask proofs from other devices
 - Proofs can be used to make security decisions
 - E.g. strong attributes for policy decision in ABAC solution
- For Internet of Things applications
 - Smart Spaces
 - Mobile devices
 - Limited devices

From location detection to location proofing

Is the device *really* there?

Idea

Let us use the device *diversity* and *scale* of the Internet of Things for cyber-defense

Inspiration: PUFs Physically Uncloanable Functions

Main Threat

- Location spoofing
- How to be sure that the device is present?

SureThing prototypes

- Mobile ad-hoc witnesses
- Wi-Fi Scavenging
- Bluetooth proximity

SureThing for mobile devices

with ad-hoc witnesses

Location Proof Techniques

• Based on the used location estimation technique

Witness Models

- Two main models:
 - Master *trusted* witness
 - Mobile circumstantial and partially trusted witness

Location Proof

Prover ID	Witness ID	Location of the Prover	Location of the Witness	Nonce	Signature
-----------	------------	---------------------------	----------------------------	-------	-----------

Location Proof in JSON format

```
"proverId": "Alice",
"witnessId": "Bob",
"proverLocation":
   {
        "latitude": 38.0123456,
        "longitude": -9.9876543,
    },
```

{

"witnessLocation":

{

"latitude": 38.0123489,

"longitude": -9.9876541,

},

"nonce": 1234,

"signature": H9xa1hDAsHaS..."

}

Communication Protocol

Implementation

- Android mobile application for both Prover and Witness
 - Java programming language
- Verifier and Certification Authority
 - RESTful web services
 - JSON messages

Evaluation

- How accurate are the location estimation techniques?
- How long does it take to issue a location proof?

Evaluation Setup

• Building with

five different areas

- Shopping center
- Testing Geo and

Wi-Fi techniques precision

Evaluation – Location Estimation

Location estimation time

Total proof time

Collusion avoidance mechanisms

• Provers can be colluding with false

witnesses

 Verifier has to use mechanisms to avoid successful collusions

Witness redundancy

• Prover has to gather proofs from multiple witnesses

Witness decay

Proofs given by repeated witnesses become less

Collusion avoidance simulation

- Simulated shopping center
- 250 users that behave as
 - Provers and Witnesses

Netlogo simulation

Collusion avoidance simulation

Accepted Denied

Use case: smart tourism

- App for tourists
 - Improve experience
- Reward visit to locations
- Challenges:
 - Open environment
 - Reuse infrastructure

CROSS location proofs for smart tourism in the city

Wi-Fi scavenging

Wi-Fi Scavenging

94:CA:1E NEO-39CB21 @ 10:21 (trigger) E3:21:09 Go-WiFi-Free @ 10:21 44:FA:EE eduroam @ 10:22 48:11:BC John's Home @ 10:34 39:DC:A2 Belem-Free-Net @ 11:12 (trigger) 02:1F:3D AliceFamily @ 11:15 0C:AF:E4 Pasteis de Nata @ 11:15

Wi-Fi Beacons with Time-based OTP

Architecture

Evaluation

- Android App
 - Available on the Play Store
- Tests with **30 users**
 - 34 different Android smartphones
- Test route with 3 locations (A, B, C, N)
 - Alameda campus of Instituto Superior Técnico

Results: Location detection performance

After 3 minutes at each location

Location	Proof Strategy	Total visits	Total detections	Success rate
А	Scavenging	34	30	88%
В	Scavenging	34	33	97%
С	ТОТР	34	34	100%
N (not visited)	Scavenging	0	0	100%

Results: Location proof performance

Results: Scavenging feasibility

- Are there enough Wi-Fi networks for scavenging to work? Generally, yes
- Does the network list require constant updates? No

Wi-Fi networks present at urban locations in Lisbon							
Location	Initial total	After ten days		After one month			
		Present	New	Present	New		
Alvalade	86	74 (86%)	13	73 (85%)	31		
Pr. Comércio	133	8 (6%)	60	7 (5%)	43		
Gulbenkian	80	54 (68%)	92	54 (68%)	55		
Jerónimos	148	34 (23%)	100	24 (16%)	62		
Oceanário	39	22 (56%)	41	24 (64%)	40		
Sé	61	25 (41%)	43	22 (36%)	44		

Use case: smart taxes

- Track movements of goods
 - Mitigate fake shipments
- Combine location proofs with digital notaries:
 - Time-stamping
 - Long-term archival
 - Tamper-resistance
- Extend existing infrastructure with dedicated devices

STOP

Secure Transport lOcation Proofs for vehicle inspections

Process Overview

Architecture

2019-12-19

Location Chain

STOP

2019-12-19

Location Accuracy

Issues inside of a tunnel

Issues with surronding buildings

Inspection Selection Parameters

Location Retrieval Rate: 1 second

Selection issue with user B

Bluetooth Interaction

- We assumed the Bluetooth connection would be maintained during the duration of the inspection procedure
 - This was proven wrong
 - Therefore we suggest a two-phase protocol

Standard Container in Truck

STOP prototype

- Implemented Android applications and Central Ledger
 - Collects location information of transportation vehicles
 - Improves transportation inspection
 - Location Chain projects all location events of a transportation
- The evaluation showed:
 - Accurate location tracking
 - Reliable location retrieval rate and optimal selection rule
 - Feasibility of the inspection protocol

Ongoing work

SureThing framework

- Open to diverse technologies
- Proof data format
 - Transport
 - Composition
 - Signature
- Proof assessment
 - Weight, rank, compare *strength* of proofs

SureThing conceptual model

Thank you!

surething

Device location certification for the Internet of Things

http://surething-project.eu

miguel.pardal@tecnico.ulisboa.pt

Invitation SureThing Event Advances in Internet of Things and Location

- Friday, January 10th, 2020
 - Hotel Roma, Lisboa
 - 09:00-17:00
- Keynote: Joshua Siegel (MIT, MSU)
- Panel Discussion: industry and academia
- SureThing project
 - Current prototypes and future work
- More information, and registration at:
 - <u>http://surething.tecnico.ulisboa.pt/workshop/</u>

SureThing publications (selection)

- Diogo Calado, Miguel L. Pardal. *Tamper-proof incentive scheme for mobile crowdsensing systems*. IEEE International Symposium on Network Computing and Applications (NCA), 2018.
- João Ferreira, Miguel L. Pardal. *Witness-based location proofs for mobile devices* (short). IEEE International Symposium on Network Computing and Applications (NCA), 2018.
- Gabriel A. Maia, Miguel L. Pardal. CROSS: loCation pROof techniqueS for consumer mobile applicationS. INForum, 2019.
- Henrique F. Santos, Miguel L. Pardal. Operation STOP: itinerary verification for smart vehicle inspections. INForum, 2019.
- Sheng Wang, Rui Claro, Miguel L. Pardal. SPYKE: Security ProxY with Knowledge-based intrusion prEvention. INForum, 2019.
- Pedro E. Carmo, Miguel L. Pardal. IoT Neighborhood Watch: device monitoring for anomaly detection (short). INForum, 2019

Miguel L. Pardal