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Abstract—Location-aware mobile applications are gaining
popularity. This growth has caused the emergence of services that
are offered to the users only when they are at specific locations.
To implement valuable services, like a product sale, it is necessary
to verify the presence of the user’s device in a way which can
be reliably trusted by the providers.

This paper presents a system to support the creation of proofs
that the user’s device is at a claimed location. The system relies
on different techniques for location estimation and on witness
devices to testify to the presence of the user’s device.

A prototype was implemented and evaluated in regard to
response times, accuracy of location estimates, and feasibility
of proof exchanges. The results show that the solution is both
practical and useful.

Index Terms—Mobile Security, Context-Awareness, Location
Estimation, Location Proof, Internet of Things

I. INTRODUCTION

The use of multiple sensors and actuators, embedded in
the environment and connected to computers, enables context-
aware systems that gather information about the real world
for use in the Internet of Things (IoT) [1]. The smartphone is
the device that can better take advantage of this environment
because of its numerous sensors, Internet connection and close
bound with a human user. Location is one of the most used
types of context [2] in smartphone applications.

This paper presents a location proof system for mobile
devices that uses multiple location estimation techniques and
relies on witnesses to testify the presence of a user at a given
place [3], [4]. A prototype was implemented and evaluated.

II. RELATED WORK

Regarding location estimation, there are alternative ways for
a user to measure location. GPS [5] is highly available but does
not work indoors. Other solutions use wireless networks based
on cell towers [6] or Wi-Fi access points [7], [8]. The Android
Network Location Provider (ANLP)1 uses both cell tower and
Wi-Fi to determine the location. This method responds faster
and uses less battery than GPS and achieves more precise
results in areas with more Wi-Fi access points. Bluetooth
location systems are based on beacons spread over the area
of interest [9]. Since range is limited (below 10 meters), it is
assumed that, if a user can detect a beacon, then she is near
the location. To cover a large area, many beacons are needed
which imposes high hardware and installation costs.

1Android Network Location Provider (ANLP): https://developer.android.
com/guide/topics/location/strategies.html

Proximity systems [10] can verify, for example, maximum
communication latency to assert proximity. However, they are
vulnerable to relay and signal amplification attacks.

Regarding location proofing, the main concept is the loca-
tion proof [11]. A proof states that a user is at a given place,
at a given time. It contains the following attributes: prover
identifier and location, witness identifier and location, random
number and/or timestamp to ensure freshness, and signature
to assure authenticity of data. The APPLAUS system [12]
works without depending on any infrastructure from the place
where a proof is generated. Instead, it uses a peer-to-peer
approach between devices. Each device acts as a witness. To
prevent abuses, there is also a collusion detection mechanism.
The CREPUSCOLO system [13] also uses a peer-to-peer but
it adds infrastructure, namely, token providers that act like
trusted witnesses, fixed to a specific location.

Fig. 1: Communication between entities.

III. SOLUTION

In our system design we want to take advantage of the
diversity of user presence in the physical space and use it
as a security information source. We assume that participating
users are willing to share some device network and power
resources and their personal identification and location. There
are four roles played by devices in our system, similar to the
ones defined in APPLAUS [12]: the prover that needs to prove
its location; the witness that agrees to give a location proof;
the verifier that specifies techniques to use and later validates
the proof; and the certification authority that is trustful and
binds identities and public keys. Figure 1 presents how the
entities communicate when a location proof is requested.978-1-5386-7659-2/18/$31.00 c©2018 IEEE
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Additional Proof Fields Setup
Geo

Proof
Geographic Location

(obtained from GPS or ANLP)
Collect geographic coordinates

with associated radius
Wi-Fi
Proof Wi-Fi Fingerprint Collect Wi-Fi fingerprints for

each zone
Beacon
Proof

Closest beacon ID
detected

Associate beacon values with
their corresponding place

TABLE I: Proof Techniques Fields and Setup Phase.

A. Location Proof Techniques

The location proof techniques are presented in Table I. Each
one requires a setup stage to be performed before location
proofs can be made. After a proof is issued, it has to be
verified. The verifier starts by checking the signature and its
freshness. Table II presents the tasks required to complete the
verification for each kind of proof.

B. Implementation

We implemented a prototype for mobile devices running
Android OS, namely, Huawei P9 Lite devices. Bluetooth was
chosen for the short-range communication, without pairing
to allow ad hoc interactions. Security is added only in the
application layer. Both the verifier and certification authority
are implemented as RESTful web services, written in Java 1.8,
with JSON payloads.

C. Collusion Avoidance Mechanisms

To prevent abuse, there is witness redundancy and decay.
In the redundancy protection, proofs have to be gathered
from multiple witnesses instead of only one. In the decay
mechanism, proofs from a same witness gradually lose their
value.

V xy =

{
V if Nxy = 0

V − Nxyk

U if Nxy > 1
(1)

The proof value is calculated with Equation 1 where Vxy

represents the proof value given to user x by witness y and
V represents the maximum proof value. Nxy represents the
number of times that y testified the presence of x and U is
the total number of users in the place.

IV. EVALUATION

A. Location estimation accuracy

As a scenario for evaluation, we used a real building
standing in as shopping center where a loyalty application
is deployed to reward frequent visitors. Figure 2 presents the
map of the location. Figure 3 represents the areas that were
defined for use in Geo proofs, one for each zone. We tested
the location estimation accuracy for each technique.

1) Geo and Wi-Fi: ANLP was used to identify in which
area from Figure 2 the user is in. The results are presented
in Figure 4. For the majority of places, Wi-Fi fingerprinting
with 10 readings was the best option. Geo has, in most cases,
lower accuracy than Wi-Fi fingerprint with 5 and 10 readings.

Fig. 2: Shopping center. Fig. 3: Geo proof setup.
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Fig. 4: Location accuracy for Geo and Wi-Fi.

2) Beacon: To obtain the location estimation accuracy with
Estimote beacons, we prepared the setup shown in Figure 5.
Tests were done with the user standing at 1 meter. Table III
summarizes the results. The beacons provide a correct location
80% of the times. The middle beacon (Vegan restaurant) has
the lowest accuracy.

B. Proof time

Figure 6 represents the total time for proof processing. Geo
was the fastest, however, the mean value is far from the median
value, as half of the measurements were done below 1.61
seconds. The Wi-Fi technique is the one with the most regular
readings regarding time spent, as mean and median values
were practically the same. Beacon proofs can sometimes take



Verifier tasks performed upon receiving proof

Geo
Proof

1. Verify if geographic locations of the prover and witness are close to each other (threshold is configurable)
2. Check if the location of the prover and witness are inside any of the previously saved areas.
3. If both are inside the same area, accepts the proof. Otherwise, rejects it.

Wi-Fi
Proof

1. Retriev places with closest fingerprint to the one given by the prover and witness.
2. Compare places. If they are different, rejects proof.
3. Verify if fingerprints of the prover and witness have a minimum amount of access points in common
with the saved fingerprint for that place. If they have, the proof is accepted. Otherwise, it is rejected.

Beacon
Proof

1. Compare beacon values provided by the prover and witness.
2. If they are the same and there is a place associated with that beacon, accepts proof. Otherwise, rejects it.

TABLE II: Verifier tasks for each proof technique.

Fig. 5: Beacon proof setup.

Sushi Vegan Pizza
Correct Claims 85% 72% 81%
Wrong Claims 15% 28% 19%

TABLE III: Location estimation accuracy with beacons.

longer to connect or to discover the closest beacon, which
increases the time needed to obtain the location.

Figure 7 demonstrates the total time, from proof request
until rejection or acceptance. Most of the time is spent on
obtaining location data and this is what differentiates the total
time between techniques. For example, in the Wi-Fi finger-
print, 10.76ms are spent in obtaining location information
(5.38ms in each device). Each technique spends approximately
between 4.5 and 5 seconds in processes other than obtaining
location data.
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Fig. 6: Time required to get location data.
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Fig. 7: Time spent from requesting proof demand until the
verifier informs the prover about the acceptance.

Fig. 8: Simulated shopping center in Netlogo.

C. Collusion Avoidance Simulation

To assess the impact of the collusion avoidance mechanisms,
we simulated the system using Netlogo2, a multi-agent pro-
grammable simulating environment.

1) Setup: The shopping center is represented as a grid,
shown in Figure 8. Grey areas represent the stores, white areas
represent the corridors, and the blue dots are the users.

Users move randomly around the shopping center. At each
tick of the simulation, each user has a 1% probability of
requesting a proof. The witnesses can be at a maximum
distance of 10 cells from the requesting user. After 10 ticks, the
witnesses that remained near the prover will respond to him.
This simulates the time that prover and witness take when
exchanging proof data via Bluetooth.

2Netlogo: https://ccl.northwestern.edu/netlogo/
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Fig. 9: Acceptance and denial rate of the proof batches. A
proof batch is a group of proofs provided by the witnesses
that the prover contacted.

2) Results: The number of cases where no witnesses are
found remains near to 20%, as shown in Figure 9.

We also analyzed the average number of witnesses found
per request. With our described setup, with 250 users, there
was an average of only 2 witnesses found. If the population
becomes 1000 users, the number of witnesses increases to 7.

If a malicious user wants to deceive the system, he will
have to collude with false witnesses. If the verifier asks for
witness redundancy, the user will have to gather proofs from N
dishonest witnesses. As we have shown before, in a setup with
250 users, finding just 2 witnesses may not be too difficult for
the malicious user. The witness decay mechanism, defined by
Equation 1, enforces that the dishonest prover cannot reuse
the same witnesses too often.

The decay of a proof value given by the same witness to
the same prover will eventually deny access to the service.
Our proposal is able to prevent collusion by taking advantage
of the diversity of witnesses. The location proof system can
also adapt to the number of users in the location and take
advantage of it. It uses the total number of users in the space
to calculate the probability of a prover encountering the same
witness and adjusts the proof decay accordingly.

V. CONCLUSION

In this paper we presented a location proof system for
mobile devices, that allows users to prove their location.
The system allows the use of geographical coordinates, Wi-
Fi fingerprinting and Bluetooth beacons. The evaluation with
performance measurements and a simulation scenario, demon-
strates that our proposal can be useful and adaptable. The
solution is most effective for crowded locations, where a user
can obtain location proofs with a diversity of witnesses. As
future work, we will address the privacy protection of users.
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