

Author: Gabriel Antunes Maia gabriel.maia@tecnico.ulisboa.pt

Presenter: Rui Nuno Lopes Claro

rui.claro@tecnico.ulisboa.pt

HDR Auto

Smartphones Totrasangency of this generation

Locations compete for tourist presence

Tourists want to say *I have been there!*

Plenty of infrastructure around...

Rewarding tourists for their visits

Architecture

Location proofs using Wi-Fi Scavenging

- Scan existing Wi-Fi networks
 - 3rd-party
- Server has a known list
 - Regular list updates required
- Client has part of the list
 - Triggers to identify location

94:CA:1E NEO-39CB21 @ 10:21 (trigger) E3:21:09 Go-WiFi-Free @ 10:21 44:FA:EE eduroam @ 10:22 48:11:BC John's Home @ 10:34 39:DC:A2 Belem-Free-Net @ 11:12 (trigger) 02:1F:3D AliceFamily @ 11:15 0C:AF:E4 Pasteis de Nata @ 11:15

Attacks on Wi-Fi Scavenging

Find the secret once, find it "forever"

- Forge location proofs
- Get undue rewards

Let's protect against this...

Location proofs using **Wi-Fi AP Time-based One Time Password**

 SSID changes every 2 minutes using seed-derived sequence

- Only server and AP know the secret seed
- Algorithm described in RFC 6238 2FA, e.g. Google Authenticator
- Proof of visit time and duration

2C:3E:B6 CROSS-C-2393 @ 12:34 2C:3E:B6 CROSS-C-9198 @ 12:36 2C:3E:B6 CROSS-C-1091 @ 12:38 5F:39:A0 CROSS-D-5527 @ 14:02 5F:39:A0 CROSS-D-2322 @ 14:04 5F:39:A0 CROSS-D-9003 @ 14:06

Attacks on Wi-Fi AP TOTP

- Relay SSIDs to remote accomplice requires more effort!
- Forge location proofs
- Get undue rewards

Let's protect against this...

Location proofs using a **Kiosk**

Completely different

- No wireless communication
- Uses QR codes Something we can **see**
- Mutual authentication
- Prevents **Sybil** attacks

Kiosk is not always the solution

- Tourist satisfaction is important
- Use kiosk only when necessary and convenient
- Variety is good: combine different strategies in different locations
 - Increase necessary attacker effort
 - Decrease deployment costs
- Architecture supports other proof strategies

Evaluation

Evaluation

- Tests with **30 users**
 - **34** different Android smartphones
- Test route with 3 locations (A, B, C, N)
 - Alameda campus of Instituto Superior Técnico

Results: Location detection performance

After 3 minutes at each location

Location	Proof Strategy	Total visits	Total detections	Success rate
А	Scavenging	34	30	88%
В	Scavenging	34	33	97 %
С	TOTP	34	34	100%
N (not visited)	Scavenging	0	0	100%

Results: Location proof performance

Results: **Power consumption**

What is the power consumption of CROSS vs. GPS? vs. no collection?

Location collection method	Polling rate	Total test duration	Average battery drain	
CROSS using GPS + Wi-Fi	30 seconds	8 hours	1.25 p.p. / hour	GPS usage has noticeable impact
CROSS using Wi-Fi (as designed)	30 seconds	39.5 hours	0.61 p.p. / hour	Negligible impact
No collection	N/A	29.5 hours	0.58 p.p. / hour	
(p.p.: percentage po	ints)			

Results: Scavenging feasibility

- Are there enough Wi-Fi networks for scavenging to work?
- Does the network list require constant updates?

Wi-Fi networks present at urban locations in Lisbon								
Location	Initial total	After ten days		After one month				
		Present	New	Present	New			
Alvalade	86	74 (86%)	13	73 (85%)	31			
Pr. Comércio	133	8 (6%)	60	7 (5%)	43			
Gulbenkian	80	54 (68%)	92	54 (68%)	55			
Jerónimos	148	34 (23%)	100	24 (16%)	62			
Oceanário	39	22 (56%)	41	24 (64%)	40			
Sé	61	25 (41%)	43	22 (36%)	44			

In conclusion, **CROSS**

- Location proofs in a smartphone application
 - Smart tourism the **demonstrative** use case
- Three different location proof techniques
 - Nonintrusive user experience
 - Adequate security guarantees
- Can be extended
 - Other location proof techniques
 - Integration with third-party systems

Ongoing Work

- **Wi-Fi traces** scavenged provide new opportunities
 - Compiled these traces into a dataset
 - Of various points of interest in the city of Lisbon
- Extend the scavenging method of CROSS
 - To provide time-bound location proofs
- Use the diversity of **Wi-Fi networks** observed in the **dataset**
 - Stable networks (trigger) to determine location
 - Volatile networks (hotspots) to determine time window

Publication:

Maia, G.A., Pardal, M.L.: CROSS: loCation pROof techniqueS for consumer mobile applicationS

Thank You

CROSS location proofs for smart tourism in the city

Gabriel Antunes Maia

gabriel.maia@tecnico.ulisboa.pt

Presenter: Rui Nuno Lopes Claro

rui.claro@tecnico.ulisboa.pt

Submission under preparation:

Elsevier Journal on Pervasive and Mobile Computing Special Issue on "Location Based Services and Applications in the era of Internet of Things"