

Project Overview

Miguel.Pardal@tecnico.ulisboa.pt

Systems @ inescid isb0a 20 YEARS DEFINING TECHNOLOGY

The **D**istributed, **P**arallel and **Secure S**ystems Group of INESC-ID

inesc-id.pt

Miguel L. Pardal

- *PhD* (2014)
 - Scalable and Secure RFID data discovery
- Researcher at INESC-ID
 - Distributed Systems Group
 - Cybersecurity
- Guest Scientist at TUM (2018)
- Assistant Professor at Técnico Lisboa
 - Tenure (2019)

Project facts

- Proposal submitted April 2017
- Funded by the Portuguese national funding agency for science, research and technology (FCT)
 - Reference No. PTDC/CCI-COM/31440/2017
- Project officially started October 2018
 - Duration: 3 years
 - Total budget is € 238K
- Web site:
- <u>http://surething-project.eu</u>

Current

- Rui Claro (PhD Candidate)
- João Tiago (MSc Candidate)
- João Costa (MSc Candidate)

– 2 Post-Docs

5

Outline

- Research Context
 - Our idea
 - Project goal
- Work Packages
- Use Cases
- Expected Contributions

Research Context

- The scale and geographic dispersion of the Internet of Things (IoT) will surpass the size of the current day Internet
 - By, at least, 3 orders of magnitude
- The IoT will be the largest and most widely distributed system ever, with a multitude of connected sensors and actuators

Security challenges

- The current Internet already has some serious, unresolved security issues
 - Adding physical world connections brings even more concerns
 - Attacks and their consequences to people and goods

8

9

Our Idea

- Turn the heterogeneity of the IoT
 complex systems, with large attack surfaces
 - into a security advantage

14-Jan-20 SureThing Overview

Externalized security

- Unify the security management across applications - Business rules applied consistently and can change dynamically Externalized security encompasses: - User management - Authentication Authorization Logging and auditing Policy Points architecture [RFC 2753]
 - PAP Administration, PEP Enforcement, PDP Decision

10

Location attribute

- Location Based Services (LBS) provide geographic or topological context
 - To mobile applications
 - To IoT services
- Usually the location is detected by the device and then trusted by the applications

Location proof

- In some cases, we want to be **sure** the **thing** is there!
 - Is the thing really at the claimed location?
 - The location of the device must be proved
- Device location can be a certified attribute
 - And be used for making security policy decisions
- Analogy: as identity needs authentication, location needs to be proven
 - Challenge-response

Location use example

- Car navigation
 - Insert destination
 - Detect geographic location
 - Retrieve map for coordinates
 - Display map, plot path
- Committed resources belong to the user
 - It is in user's self-interest to trust the location data of its device

Location proof use example

- Hail a cab
 - Insert destination
 - Detect geographic location
 - Insert pickup location
- Committed resources belong to the cab
 - An attacker may spoof user locations

15

Challenge-Response to prove presence

- Peggy (Prover)
- Victor (Verifier)
- William (Witness)
- "Hey, *Peggy*, if you are really at location X, right now, as you claim, then...
 - tell Victor what are the signal strengths from all nearby devices!
 - tell Victor the level of ambient noise for the past 3 seconds!
 - ask William to testify he is seeing you, and tell Victor
 - tell Victor ...

Location certificate

- The location certificate contains:
 - Claim
 - Evidence
 - Testimonies
 - Digital signature by Prover

Location evidence collection goes beyond GPS...

Location certificate details

Project goal

 Provide a flexible framework to support creating and validating location of devices using diverse challenge-response techniques

Create and validate location proofs

- Devices can certify their location or ask for location certificates from other devices
- Proofs can be used to make security decisions
 - E.g. trustworthy attributes for policy decision in ABAC solution

- Something that can testify and say what it saw
 - Ad-hoc (circumstantial) witness
 - Trusted witness

- When location does not have enough "uniqueness" Or does not change with desired time granularity Solution: Transmit unique data sequences Generated from secret seed e.g. TOTP Ask prover to capture the signal Alternative: transmit random data Ask prover and witness to capture the signal Verifier can check if the transmission was correctly received
 - Assume the device was at location in the specified time-window

Use Cases

• This project is validating its contributions with two use cases:

Smart Tourism

- Key economic sector in Portugal
- Build an application providing tourists with awards for each visit to a predefined set of locations, making use of reliable fast location proofs
- Use existing infrastructure

Smart Taxes / Inspections

- Use dedicated infrastructure and agents
- Intended to be collusion-resistant
- Stronger proofs: combine the locations proofs with digital notaries
 - with time-stamping
 - long-term archival

Work Packages (WP)

- WP1: API Interfaces and Data Schemas
 - To be completed
- WP2: Witness models
 - Working prototypes for ad-hoc and trusted witnesses
 - Missing: integration with identity providers
- WP3: Location Proof Techniques
 - Wi-Fi, Bluetooth
 - To explore: Cellular, GPS, ambient sensing

Work Packages (cont.)

- WP4: Smart Tourism Use Case
 - Working prototype for city trek
- WP5: Distributed Proof Ledgers
 - To be developed
- WP6: Smart Taxes Use Case
 - Working prototype for vehicle inspection

What have we done so far

- CROSS Smart Tourism Application City trekking
- STOP Smart Taxes Vehicle inspections
- Other works in IDS for IoT (not presented)

CROSS location proofs for smart tourism

android 🚈

SureThing Overview 14-Jan-20

29

30

STOP <u>Secure</u> <u>Transport</u> <u>IO</u>cation <u>Proofs</u>

Vehicle and Inspector apps

- Central ledger
- Location chain: events and witnesses

What are we doing now

- Wi-Fi scavenging for proofs
- Composite proofs in smart spaces
- Privacy protections
- (Framework libraries)

Wi-Fi scavenging

- Compiled Wi-Fi traces
 - Various points of interest in the city of Lisbon
 - Compiled traces into a dataset
- Extend the scavenging method of CROSS (Smart Tourism)

- To provide time-bound location proofs
- Use the diversity of Wi-Fi networks observed in the dataset
 - Stable networks (trigger) to determine location
 - Volatile networks (hotspots) to determine time window

Composite proofs in smart spaces

- Leverage instrumented smart devices as trusted beacons
 - Use a smart space management framework to discover, configure and control them
- Use case: hospital cleaning verification (robots or humans)

Privacy protections

Witness Protection protocol

- Differential privacy
- Geo-Indistinguishability
 - Location clustering

Why a framework?

- Interoperability
 - Proof formats and interpreters
- Extensibility
 - Allow novel techniques to be integrated as they appear
- Diversity
 - Combine different techniques to provide stronger proofs
- Flexibility
 - Choice of faster proofs vs more elaborate and reliable proofs
 - Single or multiple techniques
 - Beacons and/or witnesses

Expected Contributions

- Novel research needed to provide trusted attributes for effective IoT security policy enforcement
 - SureThing: location you can trust and verify
- Framework will make state-of-the-art techniques available
 - Extensible to incorporate new techniques as they are available
- Validated in useful applications
 - Produce proofs suited to the **use case** requirements

surething

Thank you!

This work is supported by national funds through Fundação para a Ciência e a Tecnologia (FCT) with project reference PTDC/CCI-COM/31440/2017.

Use case suggestions

- Propose innovative use cases for location proofs
 - What is the business context for the use case ?
 - What is the business process being improved ?
 - Who are the people/stakeholders involved ?
 - What will be the benefits of using location proofs?
 - What are the risks of using location proofs?

<u>https://tinyurl.com/surething-use-case</u>

